What is Data Science ? Fundamental Concepts and a Heuristic Example

  • Chikio Hayashi
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)

Summary

Data Science is not only a synthetic concept to unify statistics, data analysis and their related methods but also comprises its results. It includes three phases, design for data, collection of data, and analysis on data. Fundamental concepts and various methods based on it are discussed with a heuristic example.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The following references are relevant to the various parts of this paper.Google Scholar
  2. Arabie, P., Hubert, L.J. and De Soete, G. (1996) ed.: Clustering and Classification, World Scientific.Google Scholar
  3. Benzécri, J.P. (1973): L’Analyse des Données,Dunod.Google Scholar
  4. Benzécri, J.P. (1992): Correspondence Analysis Hand-Book, Marcel Dekker.Google Scholar
  5. Bock, H.-H. and Polasek, W. (1996) ed.: Data Analysis and Information Systems, Springer.Google Scholar
  6. Borg, I. and Shye, S. (1995): Facet Theory, Form and Content, Advanced Quantitative Techniques in the Social Sciences Series 5, Sage Publication.Google Scholar
  7. Diday, E., J. Lemaire, J. Pouget and F. Testu (1983): Elements d’Analyse des Données,Dunod.Google Scholar
  8. Diday, E., G. Celeux, Y. Lechevallier, G. Govaert and H. Ralambondrainy (1989): Classification automatique et Analyse des Données: Méthodes et environment informatique,Dunod.Google Scholar
  9. Diday, E. and Y. Leschevallier (1991): Symbolic -Numeric Data Analysis and Learning, -Versailles Sept 91- Nova Science Publisher.Google Scholar
  10. Gaul, W. and Pferfer, D. (1996) ed: From Data to Knowledge, Springer.Google Scholar
  11. Guttman, L. (1994): Louis Guttman on Theory and Methodology: Selected Writings, Shlomit Levy ed, Dartmouth.Google Scholar
  12. Hayashi, C. (1956): Theory and example of quantification(II). Proc. Inst. Statist. Math., 3, 69–98.Google Scholar
  13. Hayashi, C. (1974):.Minimum dimensional analysis MDA. Behaviormetrika, 1, 1–24. Hayashi, C. (1976): Minimum dimensional analysis MDA-OR and MDA-UO, Essays in Probability and Statistics, Ikeda, S., et al. (eds.), 395–412, Shinko Tsusho Co. Ltd. Hayashi, C. ( 1993 ): Treatise on Behaviormetrics, Asakura Shoten.Google Scholar
  14. Hayashi, C. (1993): Quantification of Qualitative Data -Theory and Method -, Asakura Shoten.Google Scholar
  15. Hayashi, C. (1995): Changing and Enduring Aspects of Japanese National Character, The Institute of Social Research, Osaka, Japan.Google Scholar
  16. Hayashi, C. and Suzuki, T. (1986): Data Analysis in Social Surveys, Iwanami Shoten. The English version by Hayashi, C. Suzuki,T. and Sasaki, M., “Data Analysis for Comparative Social Research: International Perspectives” was published by Elsevier, North-Holland in 1992.Google Scholar
  17. Hayashi, C. and Hayashi, F. (1995): Comparative Study of National Character, Proceedings of the Institute of Statistical Mathematics Vol. 43, No. 1, 27–80.Google Scholar
  18. Jambu, M. (1989): Exploration Informatique et Statistique des Données, Dunod. Jambu, M. ( 1991 ): Exploratory and Multivariate Data Analysis, Academic Press.Google Scholar
  19. Lebart, L., Morineau, A. and Warwick, K.M. (1984): Multivariate Descriptive Statistical Analysis,John Wiley.Google Scholar
  20. Lebart, L. and Salem, A. (1988): Analyse Statistiques des Données, Textuelles, Dunod.Google Scholar
  21. Lebart, L. and Salem, A. (1994): Statistique Textuelle, Dunod.Google Scholar
  22. Lebart, L., Morineau, A. and Piron, M. (1995): Statistique Exploratoire Multidimensionnelle,Dunod.Google Scholar
  23. Van Cutsem, B. (1994): Classification and Dissimilarity Analysis, Springer.Google Scholar

Copyright information

© Springer Japan 1998

Authors and Affiliations

  • Chikio Hayashi
    • 1
  1. 1.The Institute of Statistical Mathematics SakuragaokaShibuya-ku Tokyo 150Japan

Personalised recommendations