Skip to main content

Immobilization Osteopenia—Bone Loss After Arthroplastic Surgery

  • Conference paper
  • 198 Accesses

Summary

Immobilization, physical inactivity, and/or reduced muscle strength, is the cause of osteopenia. We examined 44 patients during the immobilized and remobilized periods after arthroplastic surgery. Bone mineral density (BMD) of the lumbar vertebrae showed no remarkable change, but femoral neck BMD of the contralateral limb decreased temporarily at about 5 months, then gradually returned to the preoperative value about 12 months after surgery. Metabolic bone markers of bone resorption and bone formation increased markedly, on average 3 months after surgery. In conclusion, immobilization alters the mechanical usage of bone in terms of activating bone resorption and depressing bone formation for a short period in the initial phase. Remobilization acts to restore bone mineral in both cortical and trabecular bones.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Donaldson CL, Hulley SB, Vogel JM, Hattner RS, Bayers JH, McMillan DE (1970) Effect of prolonged bed rest on bone mineral. Metabolism 19:1071–1084

    Article  PubMed  CAS  Google Scholar 

  2. Rambaut PC, Goode AW (1985) Skeletal changes during space flight. Lancet ii:1050–1052

    Article  Google Scholar 

  3. Rose G A (1966) Immobilization osteoporosis—A study of the extent, severity, and treatment with bendrofluazide. Br J Surg 53:769–774

    Article  PubMed  CAS  Google Scholar 

  4. Binderman I, Zor U, Kaye AM, Shimshoni Z, Harell A, Somjen D (1988) The transduction of mechanical force into biochemical events in bone cells may involve activation of phospholipase A2. Calcif Tissue Int, 42:261–266

    Article  PubMed  CAS  Google Scholar 

  5. Klein-Nulend J, Plas AV, Semeins CM, Ajubi NE, Frangos JA, Nijweide PJ, Burger EH (1995) Sensitivity of osteocytes to biochemical stress in vitro. FASEB J 9:441–445

    PubMed  CAS  Google Scholar 

  6. Lean JM, Jagger CJ, Chambers TJ (1995) Increased insulin-like growth factor-1 mRNA expression in osteocytes precedes the increase in bone formation in response to mechanical stimulation. J Bone Min Res, 9 (Suppl 1):S142

    Google Scholar 

  7. Klein-Nulend J, Semeins CM, Ajubi NE, Nijweide PJ, Burger EH (1995) Pulsating fluid flow increases nitric oxide (NO) synthesis by osteocytes but not periosteal osteoblasts—correlation with prostaglandin upregulation. Biochem Biophys Res Comm 217:640–648

    Article  PubMed  CAS  Google Scholar 

  8. Nishiyama S, Kawahara T, Matsuda I (1986) Decreased bone density in severely handicapped children and adults, with reference to the influence of limited mobility and anticonvulsant medication. Eur J Pediatr, 144:457–463

    Article  PubMed  CAS  Google Scholar 

  9. Tuukanenn J, Wallmark B, Jalovaara P, Takara J, Sjogren S, Vaananen K (1991) Changes induced in growing rat bone by immobilization and remobilization. Bone, 12:113–118

    Article  Google Scholar 

  10. Mattson S (1972) Reversibility of disuse osteoporosis—Experimental studies in the adult rat. Acta Orthop Scand 144(S):1–135

    Google Scholar 

  11. Bourrin S, Palle S, Genty C, Alexandre C (1995) Physical exercise during remobilization restores a normal bone trabecular network after tail suspension-induced osteopenia in young rats. J Bone Min Res 10:820–828

    Article  CAS  Google Scholar 

  12. Wronski TJ, Morey ER (1983) Inhibition of cortical and trabecular bone formation in the long bones of immobilized monkeys. Clin Orthop 181:269–276

    PubMed  Google Scholar 

  13. Uhthoff HK, Jaworski ZFG (1978) Bone loss in response to long-term immobilization. J Bone Joint Surg 60-B:420–429

    CAS  Google Scholar 

  14. Norimatsu H, Mori S, Kawanishi J, Kaji Y, Li J (1997) Immobilization as the pathogenesis of osteoporosis: Experimental and clinical studies. Osteoporosis Int, 7 (Suppl. 3):S57–S62

    Article  Google Scholar 

  15. Li XJ, Jee WSS, Chow SY, Woodburry DM (1990) Adaptation of cancellous bone to aging and immobilization in the rat: A single photon absorptiometry and histomorphome-try study. Anat Rec 227:12–24

    Article  PubMed  CAS  Google Scholar 

  16. Arnaud SB, Sherrard DJ, Maloney N, Whalen RT, Fung P (1992) Effects of 1-week head-down tilt bed rest on bone formation and the calcium endocrine system. Aviat Space Environ Med 63:14–20

    PubMed  CAS  Google Scholar 

  17. Stewart AF, Adler M, Byers CM, Segre GV, Broadus AE (1982) Calcium homeostasis in immobilization: An example of resorptive hypercalciuria. N Engl J Med 306:1136–1140

    Article  PubMed  CAS  Google Scholar 

  18. Halloran BP, Bikle DD, Harris J, Foskett HC, Morey-Holton E (1993) Skeletal unloading decreases production of 1,25-dihydroxyvitamin D. Amer J Physiol, 264:E712–E716

    PubMed  CAS  Google Scholar 

  19. Frost HM (1987) Bone “mass” and the “mechanostat”: A proposal. Anat Rec 219:1–9

    Article  PubMed  CAS  Google Scholar 

  20. Uebelhart D, Demiaux-Domenech B, Roth M, Chantraine A (1995) Bone metabolism in spinal cord injured individuals and in others who have prolonged immobilization— A review. Paraplegia 33:669–673

    Article  PubMed  CAS  Google Scholar 

  21. del Puente A, Pappone N, Mandes MG, Mantova D, Scarpa R, Oriente P (1996) Determinants of bone mineral density in immobilization—A study on hemiplegic patients. Osteoporosis Int 6:50–54

    Article  Google Scholar 

  22. Yoshikawa T, Uesato T, Nakasone T, Kuniyoshi S, Nakasone S, Ibaraki K, Takara H, Norimatsu H (1990) Influences of immobilization on bone mineral loss after the surgery of the cervical spine or lower extremity. In: Takahashi HE (ed) Bone morphometry. Niigata (Japan) Nishimura, pp 555–558

    Google Scholar 

  23. Frost HM (1998) Osteoporosis: a rationale for further definitions? Calcif Tissue Int 62:89–94

    Article  PubMed  CAS  Google Scholar 

  24. Haude JP, Shulz LA, Morgan WJ, Breen T, Warhold L, Crane GK, Baran DT (1995) Bone mineral density changes in the forearm after immobilization. Clin Orthop 317:199–205

    Google Scholar 

  25. Hansson TH, Roos BO, Nachemson A (1975) Development of osteopenia in the fourth lumbar vertebra during prolonged bed rest after operation of scoliosis. Acta Orthop Scand, 46:621–630

    Article  PubMed  CAS  Google Scholar 

  26. Jaworski ZFG, Uhthoff HK (1986) Reversibility of nontraumatic disuse osteoporosis during its active phase. Bone, 7:431–439

    Article  PubMed  CAS  Google Scholar 

  27. Trevisan C, Bigoni M, Randelli G, Marinoni EC, Peretti G, Ortolani S (1997) Periprosthetic bone density around fully hydroxyapatite coated femoral stem. Clin Orthop Rel Res 340:109–117

    Article  Google Scholar 

  28. Kroger H, Miettinen H, Arnala I, Koski E, Rushton N, Suomalainen O (1996) Evaluation of periprosthetic bone using dual-energy X-ray absorptiometry: precision of the method and effect of operation on bone mineral density. J Bone Miner Res, 11:1526–1530

    Article  PubMed  CAS  Google Scholar 

  29. Kroger H, Vanninen E, Overmyer M, Mietinen H, Rushton N, Suomalainen O (1997) Periprosthetic bone loss and regional bone turnover in uncemented total hip arthroplasty: A prospective study using high-resolution single photon emission tomography and dual-energy X-ray absorptiometry. J Bone Miner Res, 12:487–492

    Article  PubMed  CAS  Google Scholar 

  30. Eyre DR (1996) Biochemical markers of bone turnover. In: Favus MJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism, 3rd ed. Lippincott-Raven New York pp 114–119

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Tokyo

About this paper

Cite this paper

Norimatsu, H., Mori, S., Kawanishi, J. (1999). Immobilization Osteopenia—Bone Loss After Arthroplastic Surgery. In: Takahashi, H.E. (eds) Mechanical Loading of Bones and Joints. Springer, Tokyo. https://doi.org/10.1007/978-4-431-65892-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-65892-4_26

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-65894-8

  • Online ISBN: 978-4-431-65892-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics