Bone Microdamage and Its Repair: Pathophysiology of Bone Fatigue

  • Satoshi Mori
Conference paper


Physiological repetitive loadings of daily activities generate microdamage in the skeleton. Microdamage accumulates with aging. It has been demonstrated with a 3-point bending model of dog’s forelimb that microdamage is repaired directly by bone remodeling. Microdamage accumulates in bone, when there is an imbalance between generation and repair of microdamage. Aging bone fragility as well as pathological fracture is caused not only by bone loss but also by the accumulation of microdamage in bone.

Key words

Microdamage Bone fatigue Remodeling Repair Aging 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Suresh S (1991) Fatigue of materials. Cambridge University Press, New YorkGoogle Scholar
  2. 2.
    Reifsnider KL, Shulte K, Duke JC (1983) Long-term fatigue behavior of composite materials. In: O’Brien TK (ed) Long-term behavior of composites (ASTM ATP813). American Society for Testing and Materials, PhiladelphiaGoogle Scholar
  3. 3.
    Boiler and pressure vessel code (1973) American Society of Mechanical EngineeringGoogle Scholar
  4. 4..
    Airplane damage tolerance requirements (1974) (MIL-A-83444) Air Force Aeronautical Systems DivisionGoogle Scholar
  5. 5..
    Federal aviation regulation airworthiness standards (1978) (FAR25.571) Federal Aviation AdministrationGoogle Scholar
  6. 6.
    Burr DB, Martin RB, Schaffler MB, Radin EL (1985) Bone remodeling in response to in-vivo fatigue microdamage. J Biomech 18:189–200PubMedCrossRefGoogle Scholar
  7. 7.
    Frost HM (1960) Presence of microscopic cracks in vivo in bone. Henry Ford Hosp Med Bull 8:27–35Google Scholar
  8. 8.
    Burr DB, Stafford T (1990) Validity of bulk-staining technique to separate artifactual from in vivo bone microdamage. Clin Orthop Relat Res 260:305–308PubMedGoogle Scholar
  9. 9.
    Isa S, Mori S, Ibaraki K (1993) Distribution of microcracks in human ribs. Presented at 13th annual meeting of Japanese Society of Bone HistomorphometryGoogle Scholar
  10. 10.
    Schaffler MB, Choi K, Migrom C (1995) Aging and matrix microdamage accumulation in human compact bone. Bone 17(6):521–525PubMedCrossRefGoogle Scholar
  11. 11.
    Norman TL, Wang Z (1997) Microdamage of human cortical bone: Incidence and morphology in long bones. Bone 20(4):375–379PubMedCrossRefGoogle Scholar
  12. 12.
    Mori S, Harruff R, Ambrosius W, Burr DB (1997) Trabecular bone volume and micro-damage accumulation in the femoral heads of women with and without femoral neck fractures. Bone 21(6):521–526PubMedCrossRefGoogle Scholar
  13. 13.
    Mosekilde L (1990) Consequence of remodeling process for vertebral trabecular bone structure: a scanning electron microscopy study (uncoupling of unloaded structures). Bone Miner 10:13–35PubMedCrossRefGoogle Scholar
  14. 14.
    Wicks M, Garrett R, Vernon-Roberts B, Fazzalari N (1982) Absence of metabolic bone disease in the proximal femur in patients with fracture of the femoral neck. J Bone Joint Surg 64(B):319–322Google Scholar
  15. 15.
    Vernon-Roberts B, Pirie CJ (1973) Healing trabecular microfractures in the bodies of lumbar vertebrae. Ann Rheum Dis 32:406–421PubMedCrossRefGoogle Scholar
  16. 16.
    Tschantz P, Rutishauser E (1967) La surcharge mécanique de l’os vivant. Les déformations plastiques initiales et l’hypertrophie d’ adaptation. Ann Anat Pathol 12:223–248Google Scholar
  17. 17.
    Martin RB, Burr DB (1982) A hypothetical mechanism for the stimulation of osteonal remodeling by fatigue damage. J Biomech 15:137–139PubMedCrossRefGoogle Scholar
  18. 18.
    Mori S, Burr DB (1993) Increased intracortical remodeling following fatigue damage. Bone 14:203–109CrossRefGoogle Scholar
  19. 19.
    Frost HM (1981) Bone remodeling and skeletal modeling errors. CC Thomas, Springfield, ILGoogle Scholar
  20. 20.
    Burr DB (1993) Remodeling and repair of fatigue damage. Calcif Tissue Int 53:S74–81CrossRefGoogle Scholar
  21. 21.
    Burr DB, Forwood M, Fyhrie D, Martin B, Schaffler MB, Turner C (1997) Bone micro-damage and skeletal fragility in osteoporotic and stress fractures. J Bone Miner Res 12(1):6–15PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1999

Authors and Affiliations

  • Satoshi Mori
    • 1
  1. 1.Department of Orthopedic SurgeryKagawa Medical UniversityKita-gun, KagawaJapan

Personalised recommendations