Skip to main content

Nanoparticle Biomarkers Adapted for Near-Infrared Fluorescence Imaging

  • Chapter
  • First Online:
System-Materials Nanoarchitectonics

Part of the book series: NIMS Monographs ((NIMSM))

  • 729 Accesses

Abstract

We demonstrate recent advances in biomarkers of inorganic nanocrystals working in the near–infrared (NIR) wavelength range to highlight their potentials for in-vitro and in-vivo fluorescence imaging. Since inorganic nanocrystals are intrinsically stable against photo–irradiation and heat, biochemists expect to observe the long-term fluorescence of targeted cells or organs marked with biomarkers of inorganic nanocrystals. This chapter describes the recently developed NIR-light emitting biomarkers adapted for in-vitro and in-vivo imaging, and their toxicological study. At the end of this chapter, the last few years of progress in bioimaging will be outlined with possible future trends of NIR-light emitting biomarkers. It is also pointed out that the biomarkers of inorganic nanocrystals exhibit a potential risk associated with the accumulation of their constituent elements in organs. To minimize the risk, biocompatible inorganic nanocrystals are highlighted in this chapter. These biomarkers are expected to be used in various medical applications such as image-guided surgery for tumor removal and telemedicine for medication management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in-vivo imaging, and diagnostics. Science 307:538–544

    Article  CAS  Google Scholar 

  2. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5:763–775

    Article  CAS  Google Scholar 

  3. Weissleder RA (2001) Clearer vision for in-vivo imaging. Nat Biotechnol 19:316–317

    Article  CAS  Google Scholar 

  4. Quek C, Leong KW (2012) Near-infrared fluorescent nanoprobes for in-vivo optical imaging. Nanomaterials 2:92–112

    Article  CAS  Google Scholar 

  5. Liu TM, Conde J, Lipiński T, Bednarkiewicz A, Huang CC (2016) Revisiting the classification of NIR-absorbing/emitting nanomaterials for in-vivo bio applications. NPG Asia Mater 8:295

    Article  CAS  Google Scholar 

  6. He S, Song J, Qu J, Cheng Z (2018) Crucial breakthrough of second near-infrared biological window fluorophores: design and synthesis toward multimodal imaging and theranostics. Chem Soc Rev 47:4258–4278

    Article  CAS  Google Scholar 

  7. Ding F, Zhan Y, Lu X, Sun Y (2018) Recent advances in near-infrared II fluorophores for multifunctional biomedical imaging. Chem Sci 9:4370–4380

    Article  CAS  Google Scholar 

  8. Eggeling C, Widengren J, Rigler R, Seidel CAM (1998) Photobleaching of fluorescent dyes under conditions used for single-molecule detection: evidence of two-step photolysis. Anal Chem 70:2651–2659

    Article  CAS  Google Scholar 

  9. Reiss P, Carrière M, Lincheneau C, Vaure L, Tamang C (2016) Synthesis of semiconductor nanocrystals, focusing on nontoxic and earth-abundant materials. Chem Rev 116:10731–10819

    Article  CAS  Google Scholar 

  10. Xu G, Zeng S, Zhang B, Swihart MT, Yong K, Prasad PN (2016) New generation cadmium-free quantum dots for biophotonics and nanomedicine. Chem Rev 116:12234–12327

    Article  CAS  Google Scholar 

  11. Coughlan C, Ibáñez M, Dobrozhan O, Singh A, Cabot A, Ryan KM (2017) Compound copper chalcogenide nanocrystals. Chem Rev 117:5865–6109

    Article  CAS  Google Scholar 

  12. Chinnathambi S, Shirahata N (2019) Recent advances on fluorescent biomarkers of near-infrared quantum dots for in-vitro and in-vivo imaging. Sci Technol Adv Mater 20:337–355

    Article  CAS  Google Scholar 

  13. Gao XH, Cui YY, Levenson RM, Chung LM, Nie SM (2004) In-vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976

    Article  CAS  Google Scholar 

  14. He Y, Zhong YL, Su YY, Lu YM, Jiang ZY, Peng F, Xu TT, Su S, Huang Q, Fan CH et al (2011) Water-dispersed near-infrared-emitting quantum dots of ultrasmall sizes for in-vitro and in-vivo imaging. Angew Chem Int Ed 50:5695–5698

    Article  CAS  Google Scholar 

  15. Chen GY, Ohulchanskyy TY, Kachynski A, Agren H, Prasad PN (2011) Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF4: Er3+ nanocrystals under excitation at 1490 nm. ACS Nano 5:4981–4986

    Article  CAS  Google Scholar 

  16. Wang F, Deng RR, Wang J, Wang QX, Han Y, Zhu HM, Chen XY, Liu XG (2011) Tuning upconversion through energy migration in core-shell nanoparticles. Nat Mater 10:968–973

    Article  CAS  Google Scholar 

  17. Ostrowski AD, Chan EM, Gargas DJ, Katz EM, Han G, Schuck PJ (2012) Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals. ACS Nano 6:2686–2692

    Article  CAS  Google Scholar 

  18. Nyk M, Kumar R, Ohulchanskyy TY, Bergey EJ, Prasad PN (2008) High contrast in-vitro and in-vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors. Nano Lett 8:3834–3838

    Article  CAS  Google Scholar 

  19. Zhou J, Sun Y, Du XX, Xiong LQ, Hu H, Li FY (2010) Dual-modality in-vivo imaging using rare-earth nanocrystals with near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties. Biomaterials 31:3287–3295

    Article  CAS  Google Scholar 

  20. Cao TY, Yang Y, Gao Y, Zhou J, Li ZQ, Li FY (2011) High-quality water-soluble and surface-functionalized upconversion nanocrystals as luminescent probes for bioimaging. Biomaterials 32:2959–2968

    Article  CAS  Google Scholar 

  21. Zhan QQ, Qian J, Liang HJ, Somesfalean G, Wang D, He SL, Zhang ZG, Andersson-Engels S (2011) Using 915 nm laser excited Tm3+/Er3+/Ho3+-doped NaYbF4 upconversion nanoparticles for in-vitro and deeper in-vivo bioimaging without overheating irradiation. ACS Nano 5:3744–3757

    Article  CAS  Google Scholar 

  22. Dong NN, Pedroni M, Piccinelli F, Conti G, Sbarbati A, Ramírez-Hernández JE, Maestro LM, Iglesias-de la Cruz MC, Sanz-Rodriguez F, Juarranz A, Chen F, Vetrone F, Capobianco JA, Solé JG, Bettinelli M, Jaque D, Speghini A (2011) NIR-to-NIR two-photon excited CaF2: Tm3+, Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging. ACS Nano 5:8665–8671

    Article  CAS  Google Scholar 

  23. Xing HY, Bu WB, Ren QG, Zheng XP, Li M, Zhang S, Qu H, Wang Z, Hua Y, Zhao K, Zhou L, Peng W, Shi J (2012) A NaYbF4: Tm3+ nanoprobe for CT and NIR-to-NIR fluorescent bimodal imaging. Biomaterials 33:5384–5393

    Article  CAS  Google Scholar 

  24. Chen GY, Shen J, Ohulchanskyy TY, Patel NJ, Kutikov A, Li Z, Song J, Pandey RK, Agren H, Prasad PN, Han G (2012) (-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging. ACS Nano 6:8280–8287

    Article  CAS  Google Scholar 

  25. Zhou J, Shirahata N, Sun HT, Ghosh B, Ogawara M, Teng Y, Zhou S, Gui SCR, Fujii M, Qiu J (2013) Efficient dual-modal NIR-to-NIR emission of rare earth ions codoped nanocrystals for biological fluorescence imaging. J Phys Chem Lett 4:402–408

    Article  CAS  Google Scholar 

  26. Lyu L, Cheong H, Ai X, Zhang W, Li J, Yang H, Lin J, Xing B (2018) Near-infrared light-mediated rare-earth nanocrystals: recent advances in improving photon conversion and alleviating the thermal effect. NPG Asia Mater 10:685–702

    Article  Google Scholar 

  27. Zhou J, Xu S, Zhanga J, Qiu J (2015) Upconversion luminescence behavior of single nanoparticles. Nanoscale 7:15026–15036

    Article  CAS  Google Scholar 

  28. Hong G, Robinson JT, Zhang Y, Diao S, Antaris AL, Wang Q, Dai H (2012) In-vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region 51:9818–9821

    Google Scholar 

  29. Gui R, Sun J, Liu D, Wang Y, Jin H (2014) A facile cation exchange-based aqueous synthesis of highly stable and biocompatible Ag2S quantum dots emitting in the second near-infrared biological window. Dalton Trans 43:16690–16697

    Article  CAS  Google Scholar 

  30. Zamberlan F, Turyanska L, Patane A, Liu Z, Williams HEL, Fay MW, Clarke PA, Imamura Y, Jin T, Bradshaw TD, Thomas NR, Grabowska AM (2018) Stable DHLA-PEG capped PbS quantum dots: from synthesis to near-infrared biomedical imaging. J Mater Chem B 6:550–555

    Article  CAS  Google Scholar 

  31. Tang H, Yang ST, Yang YF, Ke DM, Liu JH, Chen X, Wang H, Liu Y (2016) Blood clearance, distribution, transformation, excretion, and toxicity of near-infrared quantum dots Ag2Se in mice. ACS Appl Mater Interf 8:17859–17869

    Article  CAS  Google Scholar 

  32. Durmusoglu EG, Turke Y, Acar HY (2017) Green synthesis of strongly luminescent, ultrasmall PbS and PbSe quantum dots. J Phys Chem C 121:12407–12415

    Article  CAS  Google Scholar 

  33. Javidi J, Haeri A, Shirazi FH, Kobarfard F, Dadashzadeh S (2017) Synthesis, characterization, in-vivo imaging, hemolysis, and toxicity of hydrophilic Ag2S near-infrared quantum dots. J Cluster Sci 28:165–178

    Article  CAS  Google Scholar 

  34. Song J, Ma C, Zhang W, Li X, Zhang W, Wu R, Cheng X, Ali A, Yang M, Zhu L, Xia R, Xu X (2016) Bandgap and structure engineering via cation exchange: from binary Ag2S to ternary AgInS2, quaternary AgZnInS alloy and AgZnInS/ZnS core/shell fluorescent nanocrystals for bioimaging. ACS Appl Mater Interf 8:24826–24836

    Article  CAS  Google Scholar 

  35. Chen C, He X, Gao L, Ma N (2013) Cation exchange-based facile aqueous synthesis of small, stable, and nontoxic near-infrared Ag2Te/ZnS core/shell quantum dots emitting in the second biological window. ACS Appl Mater Interf 5:1149–1155

    Article  CAS  Google Scholar 

  36. Tan L, Wan A, Li H (2013) Conjugating nitrosothiols with glutathiose stabilized silver sulfide quantum dots for controlled nitric oxide release and near-infrared fluorescence imaging. ACS Appl Mater Interf 5:11163–11171

    Article  CAS  Google Scholar 

  37. Ge XL, Zhang ZL, Xie ZX, Cui R, Pang DW (2017) Revealing the biodistribution and clearance of Ag2Se near-infrared quantum dots in mice. New J Chem 41:12721–12725

    Article  CAS  Google Scholar 

  38. Tan L, Wan A, Zhao T, Huuang R, Li H (2014) Aqueous synthesis of multidentate-polymer-capping Ag2Se quantum dots with bright photoluminescence tunable in a second near-infrared biological window. ACS Appl Mater Interf 6:6217–6222

    Article  CAS  Google Scholar 

  39. Zhang Y, Hong G, Zhang Y, Chen G, Li F, Dai H, Wang Q (2012) Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window. ACS Nano 6:3695–3702

    Article  CAS  Google Scholar 

  40. Zhang Y, Zhang Y, Hong G, He W, Zhou K, Yang K, Li F, Chen G, Liu Z, Dai H, Wang Q (2013) Biodistribution, pharmacokinetics and toxicology of Ag2S near-infrared quantum dots in mice. Biomaterials 34:3639–3646

    Google Scholar 

  41. Qin MY, Yang XQ, Wang K, Zhang XS, Song JT, Yao MH, Yan DM, Liu B, Zhao YD (2015) In-vivo cancer targeting and fluorescence-CT dual-mode imaging with nanoprobes based on silver sulfide quantum dots and iodinated oil. Nanoscale 7:19484–19492

    Article  CAS  Google Scholar 

  42. Kolny-Olesiak J, Weller H (2013) Synthesis and application of colloidal CuInS2 semiconductor nanocrystals. ACS Appl Mater Interf 5:12221–12237

    Article  CAS  Google Scholar 

  43. Mao B, Chuang C, McCleese C, Zhu J, Burda C (2014) Near-infrared emitting AgInS2/ZnS nanocrystals. J Phys Chem C 118:13883–13889

    Article  CAS  Google Scholar 

  44. Xi Y, Yang J, Ge Y, Zhao S, Wang J, Li Y, Hao Y, Chen J, Zhu Y (2017) One-pot synthesis of water-soluble near-infrared fluorescence RNase A capped CuInS2 quantum dots for in-vivo imaging. RSC Adv 7:50949–50954

    Article  CAS  Google Scholar 

  45. Jiang T, Song J, Wang H, Ye X, Wang H, Zhang W, Yang M, Xia R, Zhu L, Xu X (2015) Aqueous synthesis of color tunable Cu doped Zn- In-S/ZnS nanoparticles in the whole visible region for cellular imaging. J Mater Chem B 3:2402–2410

    Article  CAS  Google Scholar 

  46. Fahmi MZ, Chang JY (2016) Potential application of oleylamine-encapsulated AgInS2-ZnS quantum dots for cancer cell labeling. Procedia Chem 18:112–121

    Article  CAS  Google Scholar 

  47. Xie R, Peng X (2009) Synthesis of Cu-doped InP nanocrystals (d-dots) with ZnSe diffusion barrier as efficient and color-tunable NIR emitters. J Am Chem Soc 131, 10645–10651

    Article  CAS  Google Scholar 

  48. Allen PM, Liu W, Chauhan VP, Lee J, Ting AY, Fukumura D, Jain RK, Bawendi MG (2010) InAs (ZnCdS) quantum dots optimized for biological imaging in the near-infrared. J Am Chem Soc 132:470–471

    Google Scholar 

  49. Liu Z, Kumbhar A, Xu D, Zhang J, Sun Z, Fang J (2008) Coreduction colloidal synthesis of III-V nanocrystals: the case of InP. Angew Chem Int Ed 120:3596–3598

    Article  Google Scholar 

  50. Bruns OT, Bischof TS, Harris DK, Franke D, Shi Y, Riedemann L, Bartelt A, Jaworski FB, Carr JA, Rowlands CJ, Wilson MWB, Chen O, Wei H, Hwang GW, Montana DM, Coropceanu I, Achorn OB, Koepper J, Heeren J, So PTC, Fukumura D, Jensen KF, Jain RK, Bawendi MG (2017) Next-generation in-vivo optical imaging with short-wave infrared quantum dots. Nat Biomed Eng 1:0056

    Article  CAS  Google Scholar 

  51. Gao J, Chen K, Xie R, Xie J, Lee S, Cheng Z, Chen X (2010) Ultrasmall near-infrared non-cadmium quantum dots for in-vivo tumor imaging. Small 6:256–261 (2010)

    Article  CAS  Google Scholar 

  52. Chandra S, Ghosh B, Beaune G, Nagarajian U, Yasui T, Nakamura J, Tsuruoka T, Baba Y, Shirahata N, Winnik FM (2016) Functional double-shelled silicon nanocrystals for two-photon fluorescence cell imaging: spectral evolution and tuning. Nanoscale 8:9009–9019

    Article  CAS  Google Scholar 

  53. Ghosh B, Yamada H, Chinnathambi S, Özbilgin ING, Shirahata N (2018) Inverted device architecture for enhanced performance of flexible silicon quantum dot light-emitting diode. J Phys Chem Lett 9:5400–5407

    Article  CAS  Google Scholar 

  54. Mastronardi ML, Laier-Flaig F, Faulkner D, Henderson EJ, Kübel C, Lemmer U, Ozin GA (2012) Size-dependent absolute photoluminescence quantum yields for size-separated colloidally-stable silicon nanocrystals. Nano Lett 12:337–342

    Article  CAS  Google Scholar 

  55. Ghosh B, Hamaoka T, Nemoto Y, Takeguchi M, Shirahata N (2018) Impact of anchoring monolayers on the enhancement of radiative recombination in light emitting diodes based on silicon nanocrystals. J Phys Chem C 122:6422–6430

    Article  CAS  Google Scholar 

  56. Ghosh B, Takeguchi M, Nakamura J, Nemoto Y, Hamaoka T, Chandra S, Shirahata N (2016) Origin of the photoluminescence quantum yields enhanced by alkane-termination of freestanding silicon nanocrystals: temperature-dependence of optical properties. Sci Rep 6:36951

    Article  CAS  Google Scholar 

  57. Dohnalová K, Poddubny AN, Prokofiev AA, de Boer WDAM, Umesh CP, Paulusse JMJ, Zuihof H, Gregorkiewicz T(2013) Surface brightens up Si quantum dots: direct bandgap-like size-tunable emission. Light Sci Appl 2:e47

    Google Scholar 

  58. Chandra S, Masuda Y, Shirahata N, Winnik FM (2017) Transition metal doped NIR emitting silicon nanocrystals. Angew Chem Int Ed 56:6157–6160

    Article  CAS  Google Scholar 

  59. Ghosh B, Shirahata N (2014) Colloidal silicon quantum dots: synthesis and luminescence tuning from the near-UV to the near-IR range. Sci Technol Adv Mater 15:014207

    Google Scholar 

  60. Kortshagen UR, Sankaran RM, Pereira RN, Girshick SL, Wu JJ, Aydil ES (2016) Nonthermal plasma synthesis of nanocrystals: fundamental principles, materials, and applications. Chem Rev 116:11061–11127

    Article  CAS  Google Scholar 

  61. Priolo F, Gregorkiewicz T, Galli M, Krauss TF (2014) Silicon nanostructures for photonics and photovoltaics. Nat Nanotechnol 9:19–32

    Article  CAS  Google Scholar 

  62. Dasog M, Kehrle J, Rieger B, Veinot JGC (2015) Silicon nanocrystals and silicon-polymer hybrids: synthesis, surface engineering, and applications. Angew Chem Int Ed 54:2–20

    Article  CAS  Google Scholar 

  63. Ghosh B, Masuda Y, Wakayama Y, Imanaka Y, Inoue J, Hashi K, Deguchi K, Yamada H, Sakka Y, Ohki S, Shimizu T, Shirahata N (2014) Hybrid white light emitting diode based on silicon nanocrystals. Adv Funct Mater 24:7151–7160

    CAS  Google Scholar 

  64. Fujii M, Sugimoto H, Imakita K (2016) All-inorganic colloidal silicon nanocrystals- surface modification by boron and phosphorus co-doping. Nanotechnology 27:262001

    Google Scholar 

  65. Dohnalová K, Gregorkiewicz T, Kůsová K (2014) Silicon quantum dots: surface matters. J Phys: Condens Matter 26:173201

    Google Scholar 

  66. Hessel CM, Reid D, Panthani MG, Rasch MR, Goodfellow BW, Wei J, Fujii H, Akhavan V, Korgel BA (2012) Synthesis of ligand-stabilized silicon nanocrystals with size-dependent photoluminescence spanning visible to near-infrared wavelengths. Chem Mater 24:393–401

    Article  CAS  Google Scholar 

  67. Sun W, Qian C, Mastronardi ML, Wei M, Ozin GA (2013) Hydrosilylation kinetics of silicon nanocrystals. Chem Commun 49:11361–11363

    Article  CAS  Google Scholar 

  68. Wang L, Reipa V, Blasic J (2004) Silicon nanoparticles as a luminescent label to DNA. Bioconjugate Chem 15:409–412

    Article  CAS  Google Scholar 

  69. Erogbogbo F, Yong K, Roy I, Hu R, Law WC, Zhao W, Ding H, Wu H, Kumar R, Swihart MT, Prasad PN(2011) In-vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals. ACS Nano 5:413–423

    Article  CAS  Google Scholar 

  70. Ruizendaal L, Bhattacharjee S, Pournazari K, Rosso-Vasic M, de Haan LH, Alink GM, Marcelis ATM, Zuilhof H (2009) Synthesis and cytotoxicity of silicon nanoparticles with covalently attached organic monolayers. Nanotoxicology 3:339–347

    Article  CAS  Google Scholar 

  71. Alshgarif NH, Berger CEM, Varanasi SS, Chao Y, Horrocks BR (2009) Alkyl-capped silicon nanocrystals lack cytotoxicity and have enhanced intercellular accumulation in the malignant cells via cholesterol-dependent endocytosis. Small 19:221–228

    Google Scholar 

  72. Chinnathambi S, Chen S, Ganesan S, Hanagata M (2014) Silicon quantum dots for biological applications. Adv Healthcare Mater 3:10–29

    Article  CAS  Google Scholar 

  73. Hessel CM, Rasch MR, Hueso JL, Goodfellow BW, Akhavan VA, Puvanakrishnan P, Tunnel JW, Korgel BA (2010) Alkyl passivation and amphiphilic polymer coating of silicon nanocrystals for diagnostic imaging. Small 6:2026–2034

    Google Scholar 

  74. He GS, Zheng Q, Yong KT, Erogbogbo F, Swihart MT, Prasad PN (2008) Two- and three-photon absorption and frequency upconverted emission of silicon quantum dots. Nano Lett 8:2688–2692

    Article  CAS  Google Scholar 

  75. Ravotto L, Chen Q, Ma Y, Vinogradov SA, Locritani M, Bergamini G, Negi F, Yu Y, Korgel BA, Ceroni P (2017) Bright long-lived luminescence of silicon nanocrystals sensitized by two-photon absorbing antenna. Chem 2:550–560

    Article  CAS  Google Scholar 

  76. Sakiyama M, Sugimoto H, Fujii M (2018) Long-lived luminescence of colloidal silicon quantum dots for time-gated fluorescence imaging in the second near infrared window in biological tissue. Nanoscale 10:13902–13907

    Article  CAS  Google Scholar 

  77. Shirahata N (2011) Colloidal Si nanocrystals: A controlled organic-inorganic interface and its implications of color-tuning and chemical design toward sophisticated architectures. Phys Chem Chem Phys 13:7284–7294

    Article  CAS  Google Scholar 

  78. Carolan D (2017) Recent advances in germanium nanocrystals: synthesis, optical properties and applications. Prog Mater Sci 90:128–158

    Article  CAS  Google Scholar 

  79. Shirahata N, Hirakawa D, Masuda Y, Sakka Y (2013) Size-dependent color-tuning of efficiently luminescent germanium nanoparticles. Langmuir 29:7401–7410

    Article  CAS  Google Scholar 

  80. Ghosh B, Sakka Y, Shirahata N (2013) Efficient green-luminescent germanium nanocrystals. J Mater Chem A 1:3747–3751

    Article  CAS  Google Scholar 

  81. Karatutlu A, Song M, Wheeler AP, Ersoy O, Little WR, Zhang Y, Puech P, Boi FS, Luklinska Z, Sapelkin AV (2015) Synthesis and structure of free-standing germanium quantum dots and their application in live cell imaging. RSC Adv 5:20566–20573

    Article  CAS  Google Scholar 

  82. Lee DC, Pietryga JM, Rovel I, Werder DJ, Schaller RD, Klimov VI (2009) Colloidal synthesis of infrared-emitting germanium nanocrystals. J Am Chem Soc 131:3436–3437

    Article  CAS  Google Scholar 

  83. Ghosh B, Ogawara M, Sakka Y, Shirahata N (2014) Reductant-free colloidal synthesis of NIR emitting germanium nanocrystals: role of primary amine. J Nanosci Nanotechnol 14:2204–2210

    Article  CAS  Google Scholar 

  84. Ruddy DA, Johnson JC, Smith ER, Neale R (2010) Size and bandgap control in the solution-phase synthesis of near-infrared-emitting germanium nanocrystals. ACS Nano 4:7459–7466

    Article  CAS  Google Scholar 

  85. Xu Q, Liu Y, Gao C, Wei J, Zhou H, Chen Y, Dong C, Sreeprasad TS, Li N, Xia Z (2015) Synthesis, mechanistic investigation, and application of photoluminescent sulfur and nitrogen co-doped carbon dots. J Mater Chem C 3:9885–9893

    Article  CAS  Google Scholar 

  86. Xu Q, Kuang T, Liu Y, Cai L, Peng X, Sreeprasad TS, Zhao P, Yu Z, Li N (2016) Hetero atom doped carbon dots: synthesis, characterization, properties, photoluminescence mechanism and biological applications. J Mater Chem B 4:7204–7219

    Article  CAS  Google Scholar 

  87. Ding H, Yu SB, Wei JS, Xiong HM (2015) Full-color light emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 10:484–491

    Article  CAS  Google Scholar 

  88. Pan L, Sun S, Zhang L, Jiang K, Lin H (2016) Near-infrared emissive carbon dots for two-photon fluorescence bio imaging. Nanoscale 8:17350–17356

    Article  CAS  Google Scholar 

  89. Li L, Zhang R, Lu C, Sun J, Wang L, Qu B, Li T, Liu Y, Li S (2017) In situ synthesis of NIR-light emitting carbon dots derived from spinach for bio-imaging applications. J Mater Chem B 5:7328–7334

    Article  CAS  Google Scholar 

  90. Lan M, Zhao S, Zhang Z, Yan L, Guo L, Niu G, Zhang J, Zhao J, Zhang H, Wang P, Zhu G, Lee CS, Zhang W (2017) Two-photon-excited near-infrared emissive carbon dots as multifunctional agents for fluorescence imaging and photothermal therapy. Nano Res 10:3113–3123

    Article  CAS  Google Scholar 

  91. Li D, Jing P, Sun L, An Y, Shan X, Lu X, Zhou D, Han D, Shen D, Zhai Y, Qu S, Zboril R, Rogach AL (2018) Near-infrared excitation/emission and multiphoton-induced fluorescence of carbon dots. Adv Mater 30:1705913

    Article  CAS  Google Scholar 

  92. Yong K, Law W, Hu R, Ye L, Liu L, Swihart MT, Prasad PN (2013) Nanotoxicity assessment of quantum dots: from cellular to primate studies Chem Soc Rev 42:1236–1250

    Article  CAS  Google Scholar 

  93. Dong B, Li C, Chen G, Zhang Y, Deng M, Wang Q (2013) Facile synthesis of highly photoluminescent Ag2Se quantum dots as a new fluorescent probe in the second near-infrared window for in vivo imaging. Chem Mater 25:2503–2509

    Article  CAS  Google Scholar 

  94. Gu YP, Cui R, Zhang ZL, Xie ZH, Pang DW (2012) Ultrasmall near-infrared Ag2Se quantum dots with tunable fluorescence for in vivo imaging. J Am Chem Soc 134:79–82

    Article  CAS  Google Scholar 

  95. Torimoto T, Kameyama T, Kuwabata S (2014) Photofunctional materials fabricated with chalcopyrite-type semiconductor nanoparticles composed of AgInS2 and its solid solutions. J Phys Chem Lett 5:336–347

    Article  CAS  Google Scholar 

  96. Tan L, Liu S, Li X, Chronakis IS, Shen Y (2015) A new strategy for synthesizing AgInS2 quantum dots emitting brightly in near-infrared window for in vivo imaging. Coll Surf B Biointerf 125:222–229

    Article  CAS  Google Scholar 

  97. Zheng M, Li Y, Liu S, Wang W, Xie Z, Jing X (2016) One-pot to synthesize multifunctional carbon dots for near infrared fluorescence imaging and photo thermal cancer therapy. ACS Appl Mater Interf 8:23533–23541 (2016)

    Article  CAS  Google Scholar 

  98. Ravotto L, Chen Q, Ma Y, Vinogradov SA, Locritani M, Bergamini G, Negri F, Yu Y, Korgel BA, Ceroni P (2017) Bright long-lived luminescence of silicon nanocrystals sensitized by two-photon absorbing antenna. Chem 2:550–560

    Article  CAS  Google Scholar 

  99. Jiang P, Tian ZQ, Zhu CN, Zhang ZL, Pang DW (2012) Emission-tunable near infrared Ag2S quantum dots. Chem Mater 24:3–5

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoto Shirahata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 National Institute for Materials Science, Japan

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shirahata, N. (2022). Nanoparticle Biomarkers Adapted for Near-Infrared Fluorescence Imaging. In: Wakayama, Y., Ariga, K. (eds) System-Materials Nanoarchitectonics. NIMS Monographs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56912-1_3

Download citation

Publish with us

Policies and ethics