Skip to main content

Smart Polymers for Biomedical Applications

  • Chapter
  • First Online:
System-Materials Nanoarchitectonics

Part of the book series: NIMS Monographs ((NIMSM))

Abstract

Biofunctional polymers have been extensively studied for more than 50 years. Some of these polymers are defined as materials that respond to chemical stimuli, such as the concentration of certain chemicals and pH changes, and physical stimuli, such as heat, magnetic field, light, and electric field. They are also classified as “smart polymers”. To achieve more sophisticated drug treatments or to replace tissues/organs to improve biological functions, the use of smart polymers is essential because human beings are dynamic organisms in order to maintain a metabolic balance via the feedback system called homeostasis. Thanks to the recent development of polymer chemistry with precise control of molecular chains, smart polymer researches have entered the next era. This chapter describes the recent development of smart polymers in the biomedical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ratner BD (2004) A history of biomaterials. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) Biomaterials Science: An Introduction to Materials in Medicine, 2nd edn, Elsevier, pp 10–19

    Google Scholar 

  2. Baier RE, Dutton RC (1969) Initial events in interactions of blood with a foreign surface. J Biomed Mater Res 3:191–206

    Article  CAS  Google Scholar 

  3. Vogler EA (2004) Role of water in biomaterials. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) Biomaterials Science: An Introduction to Materials in Medicine, 2nd edn, Elsevier, pp 59–65

    Google Scholar 

  4. Pancrazio JJ (2008) Neural interfaces at the nanoscale. Nanomed 3:823–830

    Article  CAS  Google Scholar 

  5. Lafuma A, Quere D (2003) Superhydrophobic states. Nat Mater 2:457–460

    Article  CAS  Google Scholar 

  6. Zheng Y, Gao X (2007) Directional adhesion of superhydrophobic butterfly wings. Soft Matter 3:178–182

    Article  CAS  Google Scholar 

  7. Hoffman AS (2004) Applications of “smart polymers” as biomaterials. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) Biomaterials science: An Introduction to Materials in Medicine, 2nd edn, Elsevier, pp 107–115

    Google Scholar 

  8. Jilie K, Li M (2008) Smart hydrogels. In: Galaev I, B Mattiasson B (eds) Smart Polymers: Applications in Biotechnology and Biomedicine, 2nd edn, CRC Press, pp 247–268

    Google Scholar 

  9. Lowe AB, McCormick CL (2001) Stimuli responsive water-soluble and amphiphilic (co)polymers. In: McCormick CL (ed) Stimuli-Responsive Water Soluble and Amphiphilic Polymers, vol 780, ACS Symposium Series, American Chemical Society, pp 1–13

    Google Scholar 

  10. Perloff R, Sternberg RJ, Urbina S (1996) Intelligence: knowns and unknowns. Am Psychol 51

    Google Scholar 

  11. Ebara M, Kikuchi A, Sakai K, Okano T (2004) Fast shrinkable materials. In: Yui N, Mrsny RJ, Park K (eds) Reflexive Polymers and Hydrogels: Understanding and Designing Fast Responsive Polymeric Systems, CRC Press, pp 219–244

    Google Scholar 

  12. Heskins M, Guillet JE (1968) Solution properties of poly(N-isopropylacrylamide). J Macromol Sci Pure Appl Chem 2:1441–1455

    Article  CAS  Google Scholar 

  13. Smidsrod O, Guillet JE (1969) Study of polymer-solute interactions by gas chromatography. Macromolecules 2:272–277

    Article  Google Scholar 

  14. Hoffman AS (1987) Applications of thermally reversible polymers and hydrogels in therapeutics and diagnostics. J Control Rel 6:297–305

    Article  CAS  Google Scholar 

  15. Monji N, Hoffman AS (1987) A novel immunoassay system and bioseparation process based on thermal phase-separating polymers. Appl Biochem Biotechnol 14:107–120

    Article  CAS  Google Scholar 

  16. Chen G, Hoffman AS (1995) Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH. Nature 373:49–52

    Article  CAS  Google Scholar 

  17. Ebara M, Yamato M, Hirose M, Aoyagi T, Kikuchi A, Sakai K, Okano T (2003) Copolymerization of 2-carboxyisopropylacrylamide with N-isopropylacrylamide accelerates cell detachment from grafted surfaces by reducing temperature. Biomacromol 4:344–349

    Article  CAS  Google Scholar 

  18. Uenoyama S, Hoffman AS (1988) Synthesis and characterization of acrylamide-N-isopropylacrylamide copolymer grafts on silicone rubber substrates. Radia Phys Chem 32:605–608

    CAS  Google Scholar 

  19. Lahann J, Langer R (2005) Smart materials with dynamically controllable surfaces. MRS Bull 30:185–188

    Article  CAS  Google Scholar 

  20. Stayton PS, Shimoboji T, Long C, Chilkoti A, Chen G, Harris JM, Hoffman AS (1995) Control of protein-ligand recognition using a stimuli-responsive polymer. Nature 378:472–474

    Article  CAS  Google Scholar 

  21. Ebara M, Yamato M, Aoyagi T, Kikuchi A, Sakai K, Okano T (2004) Temperature-responsive cell culture surfaces enable on-off” affinity control between cell integrins and RGDS ligands. Biomacromol 5:505–510

    Article  CAS  Google Scholar 

  22. Aoyagi T, Ebara M, Sakai K, Sakurai Y, Okano T (2000) Novel bifunctional polymer with reactivity and temperature sensitivity. J Biomater Sci Polym Edn 11:101–110

    Google Scholar 

  23. Ebara M, Aoyagi T, Sakai K, Okano T (2001) The incorporation of carboxylate groups into temperature-responsive poly(N-isopropylacrylamide)-based hydrogels promotes rapid gel shrinking. J Polym Sci Part A: Polym Chem 39:335–342

    Article  CAS  Google Scholar 

  24. Ebara M, Aoyagi T, Sakai K, Okano T (2000) Introducing reactive carboxyl side chains retains phase transition temperature sensitivity in N-isopropylacrylamide copolymer gels. Macromolecules 33:8312–8316

    Article  CAS  Google Scholar 

  25. Yoshida T, Aoyagi T, Kokufuta E, Okano T (2003) Newly designed hydrogel with both sensitive thermo-response and biodegradability. J Polym Sci Part A: Polym Chem 41:779–787

    Article  CAS  Google Scholar 

  26. Maeda T, Yamamoto K, Aoyagi T (2006) Importance of bound water in hydration-dehydration behavior of hydroxylated poly(N-isopropylacrylamide). J Colloid Inter Sci 302:467–474

    Article  CAS  Google Scholar 

  27. Okano T, Bae YH, Jacobs H, Kim SW (1990) Thermally on–off switching polymers for drug permeation and release. J Control Rel 11:255–265

    Google Scholar 

  28. Yoshida R, Sakai K, Okano T, Sakurai Y, Bae YH, Kim SW (1991) Surfacemodulated skin layer of thermal responsive hydrogels as on–off switches. I Drug release. J Biomater Sci Polym Ed 3:155–162

    Google Scholar 

  29. Yoshida R, Sakai K, Okano T, Sakurai Y (1992) Surface-modulated skin layer of thermal responsive hydrogels as on-off switches. II. Drug permeation. J Biomater Sci Polym Ed 3:243–252

    Google Scholar 

  30. Omura T, Ebara M, Lai JJ, Yin X, Hoffman AS, Stayton PS (2014) Design of smart nanogels that respond to physiologically relevant pH values and temperatures. J Nanosci Nanotech 14:2557–2562

    Article  CAS  Google Scholar 

  31. Garbern JC, Hoffman AS, Stayton PS (2010) Injectable pH- and temperature-responsive poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers for delivery of angiogenic growth factors. Biomacromol 11:1833–1839

    Article  CAS  Google Scholar 

  32. Techawanitchai P, Ebara M, Idota N, Aoyagi T (2012) Light-induced spatial control of pH-jump reaction at smart gel interface. Colloids Surf B: Biointerfaces 99:53–59

    Article  CAS  Google Scholar 

  33. Techawanitchai P, Idota N, Uto K, Ebara M, Aoyagi T (2012) A smart hydrogel-based time bomb triggers drug release mediated by pH-jump reaction. Sci Technol Adv Mater 13:064202

    Google Scholar 

  34. Matsumoto A, Ikeda S, Harada A, Kataoka K (2003) Glucose-responsive polymer bearing a novel phenylborate derivative as a glucose-sensing moiety operating at physiological pH conditions. Biomacromolecules 4:1410–1416

    Google Scholar 

  35. Matsumoto A, Yoshida R, Kataoka K (2004) Glucose-responsive polymer gel bearing phenylborate derivative as a glucose-sensing moiety operating at the physiological pH. Biomacromolecules 5:1038–1045

    Google Scholar 

  36. Kim YJ, Ebara M, Aoyagi T (2012) Temperature-responsive electrospun nanofibers for ‘on-off’ switchable release of dextran. Sci Technol Adv Mater 13:064203

    Google Scholar 

  37. Kim YJ, Ebara M, Aoyagi T (2013) A smart hyperthermia nanofiber with switchable drug release for inducing cancer apoptosis. Adv Funct Mater 23:5753–5761

    Article  CAS  Google Scholar 

  38. Maeda T, Kim YJ, Aoyagi T, Ebara M (2017) The design of temperature-responsive nanofiber meshes for cell storage applications. Fibers 5:13

    Article  Google Scholar 

  39. Kim YJ, Ebara M, Aoyagi T (2012) A smart nanofiber web that captures and release cells. Angew Chem Intl Ed 51:10537–10541

    Article  CAS  Google Scholar 

  40. Niiyama E, Uto K, Lee CM, Sakura K, Ebara M (2018) Alternating magnetic field-triggered switchable nanofiber mesh for cancer thermo-chemotherapy. Polymers 10:1018

    Google Scholar 

  41. Ebara M, Hoffman JM, Hoffman AS, Stayton PS (2006) Switchable surface traps for injectable bead-based chromatography in PDMS microfluidic channels. Lab Chip 6:843–848

    Article  CAS  Google Scholar 

  42. Lai JJ, Hoffman JM, Ebara M, Hoffman AS, Estournes C, Wattiaux A, Stayton PS (2007) Dual magnetic-/temperature-responsive nanoparticles for microfluidic separations and assays. Langmuir 23:7385–7391

    Article  CAS  Google Scholar 

  43. Lai JJ, Nelson KE, Nash MA, Hoffman AS, Yager P, Stayton PS (2009) Dynamic bioprocessing and microfluidic transport control with smart magnetic nanoparticles in laminar-flow devices. Lab Chip 9:1997–2002

    Article  CAS  Google Scholar 

  44. Ebara M, Yamato M, Aoyagi T, Kikuchi A, Sakai K, Okano T (2008) The effect of extensible PEG tethers on shielding between grafted thermo-responsive polymer chains and integrin–RGD binding. Biomaterials 29:3650–3655

    Article  CAS  Google Scholar 

  45. Ebara M, Yamato M, Aoyagi T, Kikuchi A, Sakai K, Okano T (2008) A novel approach to observing synergy effects of PHSRN on integrin-RGD binding using intelligent surfaces. Adv Mater 20:3034–3038

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuhiro Ebara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 National Institute for Materials Science, Japan

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ebara, M. (2022). Smart Polymers for Biomedical Applications. In: Wakayama, Y., Ariga, K. (eds) System-Materials Nanoarchitectonics. NIMS Monographs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56912-1_15

Download citation

Publish with us

Policies and ethics