Skip to main content

Modification of the Work Function

  • Chapter
  • First Online:
Work Function and Band Alignment of Electrode Materials

Part of the book series: NIMS Monographs ((NIMSM))

  • 1053 Accesses

Abstract

This chapter explains how to modify the work function based on the discussion in Sect. 2.3. Because the work function is primarily an atomic quantity, the first strategy is to mix an element with the mother element, which is \(\mathrm{often}\) carried out by material scientists. The aim of mixing elements is to modify the bulk term of the work function, but the surface term is inevitably modified at the same time. Upon mixing elements, the relationship between the composition and the work function is categorized based on phase diagram; substitutional alloy, interstitial alloy, intermetallic compound (ordered alloy) and two elements with miscibility gap. For each category, the relationship is discussed from scientific principles and some examples are demonstrated. When the work function should be modified without changing bulk composition, methods to modify only surface term of the work function are required. Modifying surface termination is one of methods to modify only surface term in multi-component materials such as intermetallic compounds and compound semiconductors and insulators. Other methods are adsorbing the second element or utilizing surface segregation phenomenon in dilute alloys or layered films. Experimental examples of surface term modification are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 19 February 2021

    ■■■

References

  1. Yamamoto S, Susa K, Kawabe U (1974) Work functions of binary compounds. J Chem Phys 60:4076–4080

    Article  ADS  Google Scholar 

  2. Gordy W (1946) A new method of determining electronegativity from other atomic properties. Phys Rev 69:604–607

    Article  ADS  Google Scholar 

  3. Wilmshurst JK (1957) Electronegativity of radicals. A method of calculation. J Chem Phys 27:1129–1131

    Article  ADS  Google Scholar 

  4. Savitskiy EM, Litvak LN, Burov IV (1971) Work function of alloy single crystals in the system molybdenum-niobium. Zh Tekh Fiz 41:2431–2432 (in Russian)

    Google Scholar 

  5. Fain SC Jr, McDavid JM (1974) Work-function variation with alloy composition: Ag-Au. Phys Rev B 9:5099–5107

    Article  ADS  Google Scholar 

  6. Crampin S (1993) Segregation and the work function of a random alloy: PdAg(111). J Phys Condens Matter 5:L443–L448

    Article  ADS  Google Scholar 

  7. van Langeeld AD, Hendrickx HACM, Nieuwenhuys BE (1983) The surface composition of Pd-Cu alloys: a comparative investigation of photoelectric work function measurements, Auger electron spectroscopy and calculations based on a broken bond approximation. Thin Solid Films 109:179–192

    Article  Google Scholar 

  8. Takasu Y, Konno H, Yamashina T (1974) Work function of well-defined surface of copper-nickel alloy plates. Surf Sci 45:321–324

    Article  ADS  Google Scholar 

  9. Yoshitake M (2014) Generic trend of work functions in transition-metal carbides and nitrides. J Vac Sci Technol a 32:061403-1–61406 (and references therein)

    Google Scholar 

  10. Fernández Guillermet A, Häglund J, Grimvall G (1993) Cohesive properties and electronic structure of 5d-transition-metal carbides and nitrides in the NaCl structure. Phys Rev B 48:11673–11684

    Google Scholar 

  11. Kobayashi K (2001) First-principles study of the electronic properties of transition metal nitride surfaces. Surf Sci 493:665–670

    Article  ADS  Google Scholar 

  12. Gruzalski GR, Lui SC, Zehner DM (1990) Work-function changes accompanying changes in composition surfaces of HfCx, and TaCx. Surf Sci Lett 239:L517–L520

    Article  Google Scholar 

  13. Price DL, Cooper BR, Wills JM (1993) Effect of carbon vacancies on carbide work functions. Phys Rev B 48:15311–15315

    Article  ADS  Google Scholar 

  14. Chauhan M, Gupta DC (2013) Electronic, mechanical, phase transition and thermo-physical properties of TiC, ZrC and HfC: high pressure computational study. Diam Relat Mater 40:96–106

    Article  ADS  Google Scholar 

  15. Delgado JM (1998) Ternary and multinary compounds. In: Tomlinson RD, Hill AE, Pilkington RD (eds) Institute of physics conference series, vol 152. CRC, Boca Raton

    Google Scholar 

  16. Franken PEC, Ponec V (1974) Photoelectric work functions of Ni-Al alloys: clean surfaces and adsorption of CO. J Catal 35:417–426

    Article  Google Scholar 

  17. Kiwa N, Gotoh Y, Tsuji H, Ishikawa J (2002) Relationship between composition and work function of gold–samarium alloy thin films. Vacuum 66:517–521

    Article  ADS  Google Scholar 

  18. Franken PEC, Ponec V (1976) Photoelectric work function measurements on nickel-copper and nickel-gold alloy films: clean surfaces and adsorption of ethylene and carbon monoxide. J Catal 42:398–407

    Article  Google Scholar 

  19. Bouwman R, Sachtler WMH (1970) Photoelectric determination of the work function of gold-platinum alloys. J Catal 19:127–139

    Article  Google Scholar 

  20. Bouwman R, Sachtler WMH (1972) Photoelectric investigation of the surface composition of equilibrated Pt-Ru alloy films in ultrahigh vacuum and in the presence of CO. J Catal 26:63–69

    Article  Google Scholar 

  21. Chaturvedi S, Strongin DR (1997) A trend in the C-O bond strength of CH3O(ad) on NiAl(100), FeAl(100) and TiAl(010). Effect of the alloy Fermi level. Catal Lett 47:105–109

    Article  Google Scholar 

  22. Ostroukhov AA, Floka VM, Cherepin VT (1996) Electronic structure and magnetic ordering on the (001) surfaces of FeA1, CoAl and NiA1 alloys with bulk B2-structure. Surf Sci 352–354:919–922

    Article  ADS  Google Scholar 

  23. Baker BG, Johnson BB, Maire GLC (1971) Photoelectric work function measurements on nickel crystals and films. Surf Sci 24:572–586

    Article  ADS  Google Scholar 

  24. Strayer RW, Mackie W, Swanson LW (1973) Work function measurements by the field emission retarding potential method. Surf Sci 34:225–248

    Article  ADS  Google Scholar 

  25. Eib W, Alvarado SF (1976) Spin-polarized photoelectrons from nickel single crystals. Phys Rev Lett 37:444–446

    Article  ADS  Google Scholar 

  26. Jacobi K, Zwicker G, Gutmann A (1984) Work function, electron affinity and band bending of zinc oxide surfaces. Surf Sci 141:109–125

    Article  ADS  Google Scholar 

  27. Lorenz P, Haensel T, Gutt R, Koch RJ, Schaefer JA, Krischok S (2010) Analysis of polar GaN surfaces with photoelectron and high resolution electron energy loss spectroscopy. Phys Status Solidi B 247:1658–1661

    Article  ADS  Google Scholar 

  28. Massies J, Devoldere P, Linh NT (1979) Work function measurements on MBE GaAs(001) layers. J Vac Sci Technol 16:1244–1247

    Article  ADS  Google Scholar 

  29. Yoshitake M, Karas I, Houfek J, Madeswaran S, Song W, Matolín V (2010) Position of segregated Al atoms and the work function: experimental low energy electron diffraction intensity analysis and first-principles calculation of the (√3×√3)R30° superlattice phase on the (111) surface of a Cu–9at.%Al alloy. J Vac Sci Technol A 28:152–158

    Article  Google Scholar 

  30. Michaelides A, Hu P, Lee MH, Alavi A, King DA (2003) Resolution of an ancient surface science anomaly: work function change induced by N adsorption on W{100}. Phys Rev Lett 90:246103-1-246103–4

    ADS  Google Scholar 

  31. Kolaczkiewicz J, Bauer E (1985) The dipole moments of noble and transition metal atoms adsorbed on W(110) and W(211) surfaces. Surf Sci 160:1–11

    Article  ADS  Google Scholar 

  32. Oura K, Hanawa T (1979) LEED-AES study of the Au-Si(100) system. Surf Sci 82:202–214

    Article  ADS  Google Scholar 

  33. Tsukimoto S, Morita T, Moriyama M, Ito K, Murakami M (2005) Formation of Ti diffusion barrier layers in thin Cu(Ti) alloy films. J Electron Mater 34:592–599

    Article  ADS  Google Scholar 

  34. Holloway K, Fryer PM, Cabral C Jr, Harper JME, Bailey PJ, Kelleher KH (1992) Tantalum as a diffusion barrier between copper and silicon: failure mechanism and effect of nitrogen additions. J Appl Phys 71:5433–5444

    Article  ADS  Google Scholar 

  35. Yoshitake M, Yoshihara K (1992) Surface segregation of substrate element on metal films in film/substrate combinations with Nb, Ti and Cu. Surf Interface Anal 18:509–513

    Article  Google Scholar 

  36. Yoshitake M, Aparna Y, Yoshihara K (2001a) General rule for predicting surface segregation of substrate metal on film surface. J Vac Sci Technol A 19:1432–1437

    Article  ADS  Google Scholar 

  37. https://surfseg.nims.go.jp/

  38. Yoshitake M, Aparna Y, Yoshihara K (2001b) Tailoring of work function by surface segregation. Appl Surf Sci 169–170:666–670

    Article  ADS  Google Scholar 

  39. Aparna Y, Yoshitake M, Yoshihara K (2000) Work function and surface segregation study on Nb/Ti/Cu multilayer films. Jpn J Appl Phys 39:4447–4450

    Article  ADS  Google Scholar 

  40. Lu CH, Wong GMT, Deal MD, Tsai W, Majhi P, Chui CO, Visokay MR, Chambers JJ, Colombo L, Clemens BM, Nishi Y (2005) Characteristics and mechanism of tunable work function gate electrodes using a bilayer metal structure on SiO2/and HfO2. IEEE Electron Device Lett 26:445–447

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michiko Yoshitake .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 National Institute for Materials Science, Japan

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yoshitake, M. (2021). Modification of the Work Function. In: Work Function and Band Alignment of Electrode Materials. NIMS Monographs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56898-8_3

Download citation

Publish with us

Policies and ethics