Skip to main content

Nonprotein-Fouling, Hemocompatible, and Biospecific Surfaces Generated with Phospholipid Polymers

  • Chapter
  • First Online:
  • 480 Accesses

Abstract

Protein adsorption is the first phenomenon that occurs when synthetic materials are exposed to a living organism. The uncontrolled (nonspecific) protein adsorption becomes a trigger for unfavorable foreign body reactions to the materials from a host. Suppression of nonspecific protein adsorption is quite important to prepare synthetic materials for biomedical applications. One of the most robust approaches is zwitterionic phosphorylcholine immobilization by a mimicking of biomembrane processes. The phosphatidylcholine surface of the biomembrane provides an inert surface for biological reactions of proteins and glycoproteins to occur smoothly on the membrane. This fact provides very significant information for the development of nonprotein-fouling surfaces. In this chapter, reliable methodologies for the creation of nonprotein-fouling and hemocompatible surfaces are described with a focus on 2-methacryloyloxyethyl phosphorylcholine (MPC).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lee JH, Li T, Park K (2001) Solvation interactions for protein adsorption to biomaterial surfaces. In: Mora M (ed) Water in biomaterials surface science. Wiley, Chichester

    Google Scholar 

  2. Ratner B, Hoffman AS (2013) Non-fouling surfaces. In: Ratner B, Hoffman AS, Schoen FJ, Lemons JE (eds) Biomaterials science, 3rd edn. Elsevier Inc., Academic Press, Waltham

    Chapter  Google Scholar 

  3. Israelachvili JN (1985) Intermolecular and surface forces. Academic Press, New York

    Google Scholar 

  4. Kadoma Y, Nakabayashi N, Masuhara E, Yamauchi J (1978) Synthesis and hemolysis test of polymer containing phosphorylcholine groups. Koubunshi Ronbunshu 35:423–427

    Article  CAS  Google Scholar 

  5. Ishihara K, Ueda T, Nakabayashi N (1990) Preparation of phospholipid polymers and their properties as polymer hydrogel membrane. Polym J 22:355–360

    Article  CAS  Google Scholar 

  6. Ueda T, Oshida H, Kurita K, Ishihara K, Nakabayashi N (1992) Preparation of 2-methacryloyloxyethyl phosphorylcholine copolymers with alkyl methacrylates and their blood compatibility. Polym J 24:1259–1269

    Article  CAS  Google Scholar 

  7. Inoue Y, Watanabe J, Takai M, Ishihara K (2004) Surface characteristics of block-type copolymer composed of semi-fluorinated and phospholipid segments synthesized by living radical polymerization. J Biomater Sci Polym Edn 15:1153–1166

    Article  CAS  Google Scholar 

  8. Ma Y, Tang Y, Billingham NC, Armes SP, Lewis AL, Lloyd AW, Salvage JP (2003) Well-defined biocompatible block copolymers via atom transfer radical polymerization of 2-methacryloyloxyethyl phosphorylcholine in protic media. Macromolecules 36:3475–3484

    Article  CAS  Google Scholar 

  9. Ma Y, Tang Y, Billingham NC, Armes SP, Lewis AL (2003) Synthesis of biocompatible, stimuli-responsive, physical gels based on ABA triblock copolymers. Biomacromolecules 4:864–868

    Article  CAS  Google Scholar 

  10. Li Y, Armes SP, Jin X, Zhu S (2003) Direct synthesis of well-defined quaternized homopolymers and diblock copolymers via ATRP in protic media. Macromolecules 36:8268–8275

    Article  CAS  Google Scholar 

  11. Ishihara K, Tsuji T, Kurosaki K, Nakabayashi N (1994) Hemocompatibility on graft copolymers composed of poly(2-methacryloyloxyethyl phosphorylcholine) side chain and poly(n-butyl methacrylate) backbone. J Biomed Mater Res 28:225–232

    Article  CAS  Google Scholar 

  12. Iwasaki Y, Akiyoshi K (2004) Design of biodegradable amphiphilic polymers: well-defined amphiphilic polyphosphates with hydrophilic graft chains via ATRP. Macromolecules 37:7637–7642

    Article  CAS  Google Scholar 

  13. Watanabe J, Eriguchi T, Ishihara K (2002) Stereocomplex formation by enantiomeric poly(lactic acid) graft-type phospholipid polymers for tissue engineering. Biomacromolecules 3:1109–1114

    Article  CAS  Google Scholar 

  14. Watanabe J, Eriguchi T, Ishihara K (2002) Cell adhesion and morphology in porous scaffold based on enantiomeric poly(lactic acid) graft-type phospholipid polymers. Biomacromolecules 3:1375–1383

    Article  CAS  Google Scholar 

  15. Samanta D, McRae S, Cooper B, Hu Y, Emrick T, Pratt J, Charles SA (2008) End-functionalized phosphorylcholine methacrylates and their use in protein conjugation. Biomacromolecules 9:2891–2897

    Article  CAS  Google Scholar 

  16. Lu DR, Lee SJ, Park K (1991) Calculation of solvation interaction energies for protein adsorption on polymer surfaces. J Biomater Sci Polymer Edn 3:127–147

    Article  CAS  Google Scholar 

  17. Kitano H, Sudo K, Ichikawa K, Ide M, Ishihara K (2000) Raman spectroscopic study on the structure of water in aqueous polyelectrolyte solutions. J Phys Chem B 104:11425–11429

    Article  CAS  Google Scholar 

  18. Kitano H, Imai M, Mori T, Gemmei-Ide M, Yokoyama Y, Ishihara K (2003) Structure of water in the vicinity of phospholipid analogue copolymers as studied by vibrational spectroscopy. Langmuir 19:10260–10266

    Article  CAS  Google Scholar 

  19. Morisaku T, Watanabe J, Konno T, Takai M, Ishihara K (2008) Hydration of phosphorylcholine groups attached to highly swollen polymer hydrogels studied by thermal analysis. Polymer 49:4652–4657

    Article  CAS  Google Scholar 

  20. Hatakeyama T, Tanaka M, Hatakeyama H (2010) Studies on bound water restrained by poly(2-methacryloyloxyethyl phosphorylcholine): comparison with polysaccharide-water systems. Acta Biomater 6:2077–2082

    Article  CAS  Google Scholar 

  21. Konno T, Kurita K, Iwasaki Y, Nakabayashi N, Ishihara K (2001) Preparation of nanoparticles composed with bioinspired 2-methacryloyloxyethyl phosphorylcholine polymer. Biomaterials 22:1883–1889

    Article  CAS  Google Scholar 

  22. Iwasaki Y, Ishihara K (2005) Phosphorylcholine-containing polymers for biomedical applications. Anal Bioanal Chem 381:534–546

    Article  CAS  Google Scholar 

  23. Yamasaki A, Imamura Y, Kurita K, Iwasaki Y, Nakabayashi N, Ishihara K (2003) The surface mobility of polymers having phosphorylcholine groups connected with various bridging units and their protein adsorption-resistance properties. Colloid Surf B 28:53–62

    Article  CAS  Google Scholar 

  24. Soletti L, Nieponice A, Hong Y, Ye SH, Stankus JJ, Wagner WR, Vorp DA (2011) In vivo performance of a phospholipid-coated bioerodable elastomeric graft for small-diameter vascular applications. J Biomed Mater Res A 96:436–448

    Article  Google Scholar 

  25. Iwasaki Y, Ishihara K (2012) Cell membrane-inspired phospholipid polymers for developing medical devices with excellent biointerfaces. Sci Technol Adv Mater 13:064101

    Article  Google Scholar 

  26. Konno T, Watanabe J, Ishihara K (2004) Conjugation of enzymes on polymer nanoparticles covered with phosphorylcholine groups. Biomacromolecules 5:342–347

    Article  CAS  Google Scholar 

  27. Nishizawa K, Konno T, Takai M, Ishihara K (2008) Bioconjugated phospholipid polymer biointerface for enzyme-linked immunosorbent assay. Biomacromolecules 9:403–407

    Article  CAS  Google Scholar 

  28. Fukazawa K, Li Q, Seeger S, Ishihara K (2013) Direct observation of selective protein capturing on molecular imprinting substrates. Biosens Bioelectron 40:96–101

    Article  CAS  Google Scholar 

  29. Iwasaki Y, Takami U, Shinohara Y, Kurita K, Akiyoshi K (2007) Selective biorecognition and preservation of cell function on carbohydrate-immobilized phosphorylcholine polymers. Biomacromolecules 8:2788–2794

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiko Iwasaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Japan KK, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iwasaki, Y. (2019). Nonprotein-Fouling, Hemocompatible, and Biospecific Surfaces Generated with Phospholipid Polymers. In: Maeda, M., Takahara, A., Kitano, H., Yamaoka, T., Miura, Y. (eds) Molecular Soft-Interface Science. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56877-3_14

Download citation

Publish with us

Policies and ethics