Skip to main content

Muse Cells and Aortic Aneurysm

  • Chapter
  • First Online:
Muse Cells

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1103))

Abstract

The aorta is a well-organized, multilayered structure comprising several cell types, namely, endothelial cells (ECs), vascular smooth muscle cells (VSMCs), and fibroblasts, as well as an extracellular matrix (ECM), which includes elastic and collagen fibers. Aortic aneurysms (AAs) are defined as progressive enlargements of the aorta that carries an incremental risk of rupture as the diameter increases over time. The destruction of the aortic wall tissue is triggered by atherosclerosis, inflammation, and oxidative stress, leading to the activation of matrix metalloproteinases (MMPs), and inflammatory cytokines and chemokines, resulting in the loss of the structural back bone of VSMCs, ECM, and ECs. To date, cell-based therapy has been applied to animal models using several types of cells, such as VSMCs, ECs, and mesenchymal stem cells (MSCs). Although these cells indeed deliver beneficial outcomes for AAs, particularly by paracrine and immunomodulatory effects, the attenuation of aneurysmal dilation with a robust tissue repair is insufficient. Meanwhile, multilineage-differentiating stress-enduring (Muse) cells are known to be endogenous non-tumorigenic pluripotent-like stem cells that are included as several percent of MSCs. Since Muse cells are pluripotent-like, they have the ability to differentiate into cells representative of all three germ layers from a single cell and to self-renew. Moreover, Muse cells are able to home to the site of damage following simple intravenous injection and repair the tissue by replenishing new functional cells through spontaneous differentiation into tissue-compatible cells. Given these unique properties, Muse cells are expected to provide an efficient therapeutic efficacy for AA by simple intravenous injection. In this chapter, we summarize several studies on Muse cell therapy for AA including our recent data, in comparison with other kinds of cell therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lederle FA, Johnson GR, Wilson SE, Ballard DJ, Jordan WD Jr, Blebea J et al (2002) Rupture rate of large abdominal aortic aneurysms in patients refusing or unfit for elective repair. JAMA 287:2968–2972

    Article  PubMed  Google Scholar 

  2. Alcorn HG, Wolfson SK Jr, Sutton-Tyrrell K, Kuller LH, O’Leary D (1996) Risk factors for abdominal aortic aneurysms in older adults enrolled in the cardiovascular health study. Arterioscler Thromb Vasc Biol 16:963–970

    Article  CAS  PubMed  Google Scholar 

  3. Singh K, Bonaa KH, Jacobsen BK, Bjork L, Solberg S (2001) Prevalence of and risk factors for abdominal aortic aneurysms in a population-based study : the Tromso study. Am J Epidemiol 154:236–244

    Article  CAS  PubMed  Google Scholar 

  4. Hollier LH, Taylor LM, Ochsner J (1992) Recommended indications for operative treatment of abdominal aortic aneurysms. Report of a subcommittee of the Joint Council of the Society for vascular surgery and the North American chapter of the International Society for Cardiovascular Surgery. J Vasc Surg 15:1046–1056

    Article  CAS  PubMed  Google Scholar 

  5. Erbel R, Aboyans V, Boileau C, Bossone E, Bartolomeo RD, Eggebrecht H et al (2014) ESC guidelines on the diagnosis and treatment of aortic diseases: document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The task force for the diagnosis and treatment of aortic diseases of the European Society of Cardiology (ESC). Eur Heart J 35:2873–2926

    Article  PubMed  Google Scholar 

  6. De Bruin JL, Baas AF, Buth J, Prinssen M, Verhoeven EL, Cuypers PW et al (2010) Long-term outcome of open or endovascular repair of abdominal aortic aneurysm. New Engl J Med 362:1881–1889

    Article  PubMed  Google Scholar 

  7. Guideline. STFfCP (2009) clinical practice guideline for patients undergoing endovascular repair of abdominal aortic aneurysms (AAA). J Vasc Nurs 27:48–63

    Article  Google Scholar 

  8. Isselbacher EM (2005) Thoracic and abdominal aortic aneurysms. Circulation 111:816–828

    Article  PubMed  Google Scholar 

  9. Erentug V, Bozbuga N, Omeroglu SN, Ardal H, Eren E, Guclu M et al (2003) Rupture of abdominal aortic aneurysms in Behcet’s disease. Ann Vasc Surg 17:682–685

    Article  PubMed  Google Scholar 

  10. Matsumura K, Hirano T, Takeda K, Matsuda A, Nakagawa T, Yamaguchi N et al (1991) Incidence of aneurysms in Takayasu’s arteritis. Angiology 42:308–315

    Article  CAS  PubMed  Google Scholar 

  11. Towbin JA, Casey B, Belmont J (1999) The molecular basis of vascular disorders. Am J Hum Genet 64:678–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Johnston KW, Rutherford RB, Tilson MD, Shah DM, Hollier L, Stanley JC (1991) Suggested standards for reporting on arterial aneurysms. Subcommittee on reporting standards for arterial aneurysms, ad hoc committee on reporting standards, society for vascular surgery and North American chapter, international society for cardiovascular surgery. J Vasc Surg 13:452–458

    Article  CAS  PubMed  Google Scholar 

  13. Reed D, Reed C, Stemmermann G, Hayashi T (1992) Are aortic aneurysms caused by atherosclerosis? Circulation 85:205–211

    Article  CAS  PubMed  Google Scholar 

  14. Tilson MD (1992) Aortic aneurysms and atherosclerosis. Circulation 85:378–379

    Article  CAS  PubMed  Google Scholar 

  15. Xu C, Zarins CK, Glagov S (2001) Aneurysmal and occlusive atherosclerosis of the human abdominal aorta. J Vasc Surg 33:91–96

    Article  CAS  PubMed  Google Scholar 

  16. Vardulaki KA, Walker NM, Day NE, Duffy SW, Ashton HA, Scott RA (2000) Quantifying the risks of hypertension, age, sex and smoking in patients with abdominal aortic aneurysm. Br J Surg 87:195–200

    Article  CAS  PubMed  Google Scholar 

  17. Lederle FA, Johnson GR, Wilson SE (2001) Abdominal aortic aneurysm in women. J Vasc Surg 34:122–126

    Article  CAS  PubMed  Google Scholar 

  18. Brady AR, Thompson SG, Fowkes FG, Greenhalgh RM, Powell JT (2004) Abdominal aortic aneurysm expansion: risk factors and time intervals for surveillance. Circulation 110:16–21

    Article  PubMed  Google Scholar 

  19. Thompson RW, Geraghty PJ, Lee JK (2002) Abdominal aortic aneurysms: basic mechanisms and clinical implications. Curr Probl Surg 39:110–230

    Article  PubMed  Google Scholar 

  20. Melrose J, Whitelock J, Xu Q, Ghosh P (1998) Pathogenesis of abdominal aortic aneurysms: possible role of differential production of proteoglycans by smooth muscle cells. J Vasc Surg 28:676–686

    Article  CAS  PubMed  Google Scholar 

  21. Dobrin PB, Mrkvicka R (1994) Failure of elastin or collagen as possible critical connective tissue alterations underlying aneurysmal dilatation. Cardiovasc Surg 2:484–488

    CAS  PubMed  Google Scholar 

  22. Satta J, Juvonen T, Haukipuro K, Juvonen M, Kairaluoma MI (1995) Increased turnover of collagen in abdominal aortic aneurysms, demonstrated by measuring the concentration of the aminoterminal propeptide of type III procollagen in peripheral and aortal blood samples. J Vasc Surg 22:155–160

    Article  CAS  PubMed  Google Scholar 

  23. Traub O, Berk BC (1998) Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscler Thromb Vasc Biol 18:677–685

    Article  CAS  PubMed  Google Scholar 

  24. Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92:827–839

    Article  CAS  PubMed  Google Scholar 

  25. Kazi M, Thyberg J, Religa P, Roy J, Eriksson P, Hedin U et al (2003) Influence of intraluminal thrombus on structural and cellular composition of abdominal aortic aneurysm wall. J Vasc Surg 38:1283–1292

    Article  PubMed  Google Scholar 

  26. Fontaine V, Touat Z, el Mtairag M, Vranckx R, Louedec L, Houard X et al (2004) Role of leukocyte elastase in preventing cellular re-colonization of the mural thrombus. Am J Pathol 164:2077–2087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sakalihasan N, Limet R, Defawe OD (2005) Abdominal aortic aneurysm. Lancet 365:1577–1589

    Article  CAS  PubMed  Google Scholar 

  28. Sakalihasan N, Delvenne P, Nusgens BV, Limet R, Lapiere CM (1996) Activated forms of MMP2 and MMP9 in abdominal aortic aneurysms. J Vasc Surg 24:127–133

    Article  CAS  PubMed  Google Scholar 

  29. Curci JA, Liao S, Huffman MD, Shapiro SD, Thompson RW (1998) Expression and localization of macrophage elastase (matrix metalloproteinase-12) in abdominal aortic aneurysms. J Clin Invest 102:1900–1910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Davis V, Persidskaia R, Baca-Regen L, Itoh Y, Nagase H, Persidsky Y et al (1998) Matrix metalloproteinase-2 production and its binding to the matrix are increased in abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 18:1625–1633

    Article  CAS  PubMed  Google Scholar 

  31. Mao D, Lee JK, VanVickle SJ, Thompson RW (1999) Expression of collagenase-3 (MMP-13) in human abdominal aortic aneurysms and vascular smooth muscle cells in culture. Biochem Biophys Res Commun 261:904–910

    Article  CAS  PubMed  Google Scholar 

  32. Longo GM, Xiong W, Greiner TC, Zhao Y, Fiotti N, Baxter BT (2002) Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms. J Clin Invest 110:625–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tromp G, Gatalica Z, Skunca M, Berguer R, Siegel T, Kline RA et al (2004) Elevated expression of matrix metalloproteinase-13 in abdominal aortic aneurysms. Ann Vasc Surg 18:414–420

    Article  PubMed  Google Scholar 

  34. Thompson RW, Parks WC (1996) Role of matrix metalloproteinases in abdominal aortic aneurysms. Ann N Y Acad Sci 800:157–174

    Article  CAS  PubMed  Google Scholar 

  35. Tamarina NA, McMillan WD, Shively VP, Pearce WH (1997) Expression of matrix metalloproteinases and their inhibitors in aneurysms and normal aorta. Surgery 122:264–271 discussion 71-2

    Article  CAS  PubMed  Google Scholar 

  36. Knox JB, Sukhova GK, Whittemore AD, Libby P (1997) Evidence for altered balance between matrix metalloproteinases and their inhibitors in human aortic diseases. Circulation 95:205–212

    Article  CAS  PubMed  Google Scholar 

  37. Middleton RK, Lloyd GM, Bown MJ, Cooper NJ, London NJ, Sayers RD (2007) The pro-inflammatory and chemotactic cytokine microenvironment of the abdominal aortic aneurysm wall: a protein array study. J Vasc Surg 45:574–580

    Article  PubMed  Google Scholar 

  38. Juvonen J, Surcel HM, Satta J, Teppo AM, Bloigu A, Syrjala H et al (1997) Elevated circulating levels of inflammatory cytokines in patients with abdominal aortic aneurysm. Arterioscler Thromb Vasc Biol 17:2843–2847

    Article  CAS  PubMed  Google Scholar 

  39. Sprague AH, Khalil RA (2009) Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem Pharmacol 78:539–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Charo IF, Taubman MB (2004) Chemokines in the pathogenesis of vascular disease. Circ Res 95:858–866

    Article  CAS  PubMed  Google Scholar 

  41. Lopez-Candales A, Holmes DR, Liao S, Scott MJ, Wickline SA, Thompson RW (1997) Decreased vascular smooth muscle cell density in medial degeneration of human abdominal aortic aneurysms. Am J Pathol 150:993–1007

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Uitto J, Christiano AM, Kahari VM, Bashir MM, Rosenbloom J (1991) Molecular biology and pathology of human elastin. Biochem Soc Trans 19:824–829

    Article  CAS  PubMed  Google Scholar 

  43. Liu JM, Davidson JM (1988) The elastogenic effect of recombinant transforming growth factor-beta on porcine aortic smooth muscle cells. Biochem Biophys Res Commun 154:895–901

    Article  CAS  PubMed  Google Scholar 

  44. Foster J, Rich CB, Florini JR (1987) Insulin-like growth factor I, somatomedin C, induces the synthesis of tropoelastin in aortic tissue. Coll Relat Res 7:161–169

    Article  CAS  PubMed  Google Scholar 

  45. Allaire E, Muscatelli-Groux B, Mandet C, Guinault AM, Bruneval P, Desgranges P et al (2002) Paracrine effect of vascular smooth muscle cells in the prevention of aortic aneurysm formation. J Vasc Surg 36:1018–1026

    Article  PubMed  Google Scholar 

  46. Bombeli T, Karsan A, Tait JF, Harlan JM (1997) Apoptotic vascular endothelial cells become procoagulant. Blood 89:2429–2442

    Article  CAS  PubMed  Google Scholar 

  47. Bombeli T, Schwartz BR, Harlan JM (1999) Endothelial cells undergoing apoptosis become proadhesive for nonactivated platelets. Blood 93:3831–3838

    Article  CAS  PubMed  Google Scholar 

  48. Durand E, Scoazec A, Lafont A, Boddaert J, Al Hajzen A, Addad F et al (2004) In vivo induction of endothelial apoptosis leads to vessel thrombosis and endothelial denudation: a clue to the understanding of the mechanisms of thrombotic plaque erosion. Circulation 109:2503–2506

    Article  CAS  PubMed  Google Scholar 

  49. Franck G, Dai J, Fifre A, Ngo S, Justine C, Michineau S et al (2013) Reestablishment of the endothelial lining by endothelial cell therapy stabilizes experimental abdominal aortic aneurysms. Circulation 127:1877–1887

    Article  CAS  PubMed  Google Scholar 

  50. Hackam DG, Thiruchelvam D, Redelmeier DA (2006) Angiotensin-converting enzyme inhibitors and aortic rupture: a population-based case-control study. Lancet 368:659–665

    Article  CAS  PubMed  Google Scholar 

  51. Schouten O, van Laanen JH, Boersma E, Vidakovic R, Feringa HH, Dunkelgrun M et al (2006) Statins are associated with a reduced infrarenal abdominal aortic aneurysm growth. Eur J Vasc Endovasc Surg 32:21–26

    Article  CAS  PubMed  Google Scholar 

  52. Yamawaki-Ogata A, Hashizume R, Satake M, Kaneko H, Mizutani S, Moritan T et al (2010) A doxycycline loaded, controlled-release, biodegradable fiber for the treatment of aortic aneurysms. Biomaterials 31:9554–9564

    Article  CAS  PubMed  Google Scholar 

  53. Baxter BT, Pearce WH, Waltke EA, Littooy FN, Hallett JW Jr, Kent KC et al (2002) Prolonged administration of doxycycline in patients with small asymptomatic abdominal aortic aneurysms: report of a prospective (Phase II) multicenter study. J Vasc Surg 36:1–12

    Article  PubMed  Google Scholar 

  54. Walton LJ, Franklin IJ, Bayston T, Brown LC, Greenhalgh RM, Taylor GW et al (1999) Inhibition of prostaglandin E2 synthesis in abdominal aortic aneurysms: implications for smooth muscle cell viability, inflammatory processes, and the expansion of abdominal aortic aneurysms. Circulation 100:48–54

    Article  CAS  PubMed  Google Scholar 

  55. Yoshimura K, Aoki H, Ikeda Y, Fujii K, Akiyama N, Furutani A et al (2005) Regression of abdominal aortic aneurysm by inhibition of c-Jun N-terminal kinase. Nat Med 11:1330–1338

    Article  CAS  PubMed  Google Scholar 

  56. Allaire E, Muscatelli-Groux B, Guinault AM, Pages C, Goussard A, Mandet C et al (2004) Vascular smooth muscle cell endovascular therapy stabilizes already developed aneurysms in a model of aortic injury elicited by inflammation and proteolysis. Ann Surg 239:417–427

    Article  PubMed  PubMed Central  Google Scholar 

  57. Losy F, Dai J, Pages C, Ginat M, Muscatelli-Groux B, Guinault AM et al (2003) Paracrine secretion of transforming growth factor-beta1 in aneurysm healing and stabilization with endovascular smooth muscle cell therapy. J Vasc Surg 37:1301–1309

    Article  PubMed  Google Scholar 

  58. Hashizume R, Yamawaki-Ogata A, Ueda Y, Wagner WR, Narita Y (2011) Mesenchymal stem cells attenuate angiotensin II-induced aortic aneurysm growth in apolipoprotein E-deficient mice. J Vasc Surg 54:1743–1752

    Article  PubMed  Google Scholar 

  59. Schneider F, Saucy F, de Blic R, Dai J, Mohand F, Rouard H et al (2013) Bone marrow mesenchymal stem cells stabilize already-formed aortic aneurysms more efficiently than vascular smooth muscle cells in a rat model. Eur J Vasc Endovasc Surg 45:666–672

    Article  CAS  PubMed  Google Scholar 

  60. Fu XM, Yamawaki-Ogata A, Oshima H, Ueda Y, Usui A, Narita Y (2013) Intravenous administration of mesenchymal stem cells prevents angiotensin II-induced aortic aneurysm formation in apolipoprotein E-deficient mouse. J Transl Med 11:175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yamawaki-Ogata A, Fu X, Hashizume R, Fujimoto KL, Araki Y, Oshima H et al (2014) Therapeutic potential of bone marrow-derived mesenchymal stem cells in formed aortic aneurysms of a mouse model. Eur J Cardiothorac Surg 45:e156–e165

    Article  PubMed  Google Scholar 

  62. Sharma AK, Lu G, Jester A, Johnston WF, Zhao Y, Hajzus VA et al (2012) Experimental abdominal aortic aneurysm formation is mediated by IL-17 and attenuated by mesenchymal stem cell treatment. Circulation 126:S38–S45

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Riera Del Moral L, Aramburu CL, Garcia JR, de Cubas LR, Garcia-Olmo D, Garcia-Arranz M (2012) Experimental model for coadjuvant treatment with mesenchymal stem cells for aortic aneurysm. Am J Stem Cells 1:174–181

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Tian X, Fan J, Yu M, Zhao Y, Fang Y, Bai S et al (2014) Adipose stem cells promote smooth muscle cells to secrete elastin in rat abdominal aortic aneurysm. PLoS One 9:e108105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Park HS, Choi GH, Hahn S, Yoo YS, Lee JY, Lee T (2013) Potential role of vascular smooth muscle cell-like progenitor cell therapy in the suppression of experimental abdominal aortic aneurysms. Biochem Biophys Res Commun 431:326–331

    Article  CAS  PubMed  Google Scholar 

  66. Kuroda Y, Kitada M, Wakao S, Nishikawa K, Tanimura Y, Makinoshima H et al (2010) Unique multipotent cells in adult human mesenchymal cell populations. Proc Natl Acad Sci U S A 107:8639–8643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hori E, Hayakawa Y, Hayashi T, Hori S, Okamoto S, Shibata T et al (2016) Mobilization of pluripotent multilineage-differentiating stress-enduring cells in ischemic stroke. J Stroke Cerebrovasc Dis 25:1473–1481

    Article  PubMed  Google Scholar 

  68. Dezawa M (2016) Muse cells provide the pluripotency of mesenchymal stem cells: direct contribution of Muse cells to tissue regeneration. Cell Transplant 25:849–861

    Article  PubMed  Google Scholar 

  69. Kuroda Y, Wakao S, Kitada M, Murakami T, Nojima M, Dezawa M (2013) Isolation, culture and evaluation of multilineage-differentiating stress-enduring (Muse) cells. Nat Protoc 8:1391–1415

    Article  PubMed  CAS  Google Scholar 

  70. Gimeno ML, Fuertes F, Barcala Tabarrozzi AE, Attorressi AI, Cucchiani R, Corrales L et al (2017) Pluripotent nontumorigenic adipose tissue-derived Muse cells have immunomodulatory capacity mediated by transforming growth factor-beta1. Stem Cells Transl Med 6:161–173

    Article  CAS  PubMed  Google Scholar 

  71. Alessio N, Ozcan S, Tatsumi K, Murat A, Peluso G, Dezawa M et al (2017) The secretome of MUSE cells contains factors that may play a role in regulation of stemness, apoptosis and immunomodulation. Cell Cycle 16:33–44

    Article  CAS  PubMed  Google Scholar 

  72. Hosoyama K, Wakao S, Kushida Y, Ogura F, Maeda K, Adachi O et al (2018) Intravenously injected human Muse cells selectively engraft into mouse aortic aneurysms and attenuate dilatation by differentiating into multiple cell types. https://doi.org/10.1016/j.jtcvs.2018.01.098

    Article  PubMed  Google Scholar 

  73. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Article  CAS  PubMed  Google Scholar 

  74. Lu X, Dunn J, Dickinson AM, Gillespie JI, Baudouin SV (2004) Smooth muscle alpha-actin expression in endothelial cells derived from CD34+ human cord blood cells. Stem Cells Dev 13:521–527

    Article  CAS  PubMed  Google Scholar 

  75. Daugherty A, Manning MW, Cassis LA (2000) Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice. J Clin Invest 105:1605–1612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bi Y, Zhong H, Xu K, Zhang Z, Qi X, Xia Y et al (2013) Development of a novel rabbit model of abdominal aortic aneurysm via a combination of periaortic calcium chloride and elastase incubation. PLoS One 8:e68476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Katagiri H, Kushida Y, Nojima M, Kuroda Y, Wakao S, Ishida K et al (2016) A distinct subpopulation of bone marrow mesenchymal stem cells, Muse cells, directly commit to the replacement of liver components. Am J Transplant 16:468–483

    Article  CAS  PubMed  Google Scholar 

  78. Yamauchi T, Kuroda Y, Morita T, Shichinohe H, Houkin K, Dezawa M et al (2015) Therapeutic effects of human multilineage-differentiating stress enduring (MUSE) cell transplantation into infarct brain of mice. PLoS One 10:e0116009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Uchida H, Morita T, Niizuma K, Kushida Y, Kuroda Y, Wakao S et al (2016) Transplantation of unique subpopulation of fibroblasts, Muse cells, ameliorates experimental stroke possibly via robust neuronal differentiation. Stem Cells 34:160–173

    Article  CAS  PubMed  Google Scholar 

  80. Kinoshita K, Kuno S, Ishimine H, Aoi N, Mineda K, Kato H et al (2015) Therapeutic potential of adipose-derived SSEA-3-positive Muse cells for treating diabetic skin ulcers. Stem Cells Transl Med 4:146–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Iseki M, Kushida Y, Wakao S, Akimoto T, Mizuma M, Motoi F et al (2017) Muse cells, nontumorigenic pluripotent-like stem cells, have liver regeneration capacity through specific homing and cell replacement in a mouse model of liver fibrosis. Cell Transplant 26:821–840

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lewellis SW, Knaut H (2012) Attractive guidance: how the chemokine SDF1/CXCL12 guides different cells to different locations. Semin Cell Dev Biol 23:333–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Vessey DA, Li L, Honbo N, Karliner JS (2009) Sphingosine 1-phosphate is an important endogenous cardioprotectant released by ischemic pre- and postconditioning. Am J Physiol Heart Circ Physiol 297:H1429–H1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ratajczak MZ, Suszynska M, Borkowska S, Ratajczak J, Schneider G (2014) The role of sphingosine-1 phosphate and ceramide-1 phosphate in trafficking of normal stem cells and cancer cells. Expert Opin Ther Targets 18:95–107

    Article  CAS  PubMed  Google Scholar 

  85. Tanaka T, Nishigaki K, Minatoguchi S, Nawa T, Yamada Y, Kanamori H et al (2017) Mobilized Muse cells after acute myocardial infarction predict cardiac function and remodeling in the chronic phase. Circ J 82:561–571

    Article  PubMed  CAS  Google Scholar 

  86. Diaz-Flores L Jr, Madrid JF, Gutierrez R, Varela H, Valladares F, Diaz-Flores L (2007) Cell contribution of vasa-vasorum to early arterial intimal thickening formation. Histol Histopathol 22:1379–1386

    PubMed  Google Scholar 

  87. Daugherty A, Cassis LA (2002) Mechanisms of abdominal aortic aneurysm formation. Curr Atheroscler Rep 4:222–227

    Article  PubMed  Google Scholar 

  88. Diez-Tejedor E, Gutierrez-Fernandez M, Martinez-Sanchez P, Rodriguez-Frutos B, Ruiz-Ares G, Lara ML et al (2014) Reparative therapy for acute ischemic stroke with allogeneic mesenchymal stem cells from adipose tissue: a safety assessment: a phase II randomized, double-blind, placebo-controlled, single-center, pilot clinical trial. J Stroke Cerebrovasc Dis 23:2694–2700

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshikatsu Saiki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Japan KK, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hosoyama, K., Saiki, Y. (2018). Muse Cells and Aortic Aneurysm. In: Dezawa, M. (eds) Muse Cells. Advances in Experimental Medicine and Biology, vol 1103. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56847-6_15

Download citation

Publish with us

Policies and ethics