Skip to main content

Biological Mechanisms Underlying Climate Impacts on Population Dynamics of Small Pelagic Fish

  • Chapter
  • First Online:
Fish Population Dynamics, Monitoring, and Management

Part of the book series: Fisheries Science Series ((FISHSS))

Abstract

Small pelagic fish account for more than 30% by weight of the total landings of marine fisheries in Japan and around the world. Their population dynamics have tended to be dramatic and cyclical in response to climate variability on multi-decadal time scales. However, the biological mechanisms linking climate variability to population dynamics are still unresolved. This chapter reviews the biological mechanisms underlying climate impacts on the population dynamics of small pelagic fish, taking examples from the species alternations between anchovy and sardine in the Kuroshio Current system. First, the chapter examines how environmental variability regulates the survival probability of small pelagic fish, highlighting the role of vital parameters such as growth rate and physiological condition as an amplifier linking subtle changes in environmental variables to dramatic changes in the population dynamics. Then, the chapter introduces hypotheses for the biological mechanism of species alternation, showing how environmental conditions differently affect the population dynamics of different small pelagic fish species. Lastly, recommendations for future research directions are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alheit J (2010) SPACC continues under ICES wings. GLOBEC International Newsletter 16:24

    Google Scholar 

  • Alheit J, Niquen M (2004) Regime shifts in the Humboldt Current ecosystem. Prog Oceanogr 60:201–222

    Article  Google Scholar 

  • Anderson JT (1988) A review of size dependent survival during pre-recruit stages of fishes in relation to recruitment. J Northwest Atl Fish Sci 8:55–66

    Article  Google Scholar 

  • Bailey KM, Houde ED (1989) Predation on eggs and larvae of marine fishes and the recruitment problem. Adv Mar Biol 25:1–83

    Article  Google Scholar 

  • Bakun A, Broad K (2003) Environmental ‘loopholes’ and fish population dynamics: comparative pattern recognition with focus on El Niño effects in the Pacific. Fish Oceanogr 12:458–473

    Article  Google Scholar 

  • Bakun A, Cury P (1999) The “school trap”: a mechanism promoting large-amplitude out-of-phase population oscillations of small pelagic fish species. Ecol Lett 2:349–351

    Article  Google Scholar 

  • Barange M, Coetzee J, Takasuka A, Hill K, Gutierrez M, Oozeki Y, van der Lingen C, Agostini V (2009) Habitat expansion and contraction in anchovy and sardine populations. Prog Oceanogr 83:251–260

    Article  Google Scholar 

  • Brunel T, Piet GJ (2013) Is age structure a relevant criterion for the health of fish stocks? ICES J Mar Sci 70:270–283

    Article  Google Scholar 

  • Chambers RC, Leggett WC (1987) Size and age at metamorphosis in marine fishes: an analysis of laboratory-reared winter flounder (Pseudopleuronectes americanus) with a review of variation in other species. Can J Fish Aquat Sci 44:1936–1947

    Article  Google Scholar 

  • Chavez FP, Ryan J, Lluch-Cota SE, Ñiquen CM (2003) From anchovies to sardines and back: multidecadal change in the Pacific Ocean. Science 299:217–221

    Article  CAS  PubMed  Google Scholar 

  • Checkley D, Alheit J, Oozeki Y, Roy C (eds) (2009) Climate change and small pelagic fish. Cambridge University Press, Cambridge

    Google Scholar 

  • Chouvelon T, Chappuis A, Bustamante P, Lefebvre S, Mornet F, Guillou G, Violamer L, Dupuy C (2014) Trophic ecology of European sardine Sardina pilchardus and European anchovy Engraulis encrasicolus in the Bay of Biscay (north-east Atlantic) inferred from δ13C and δ15N values of fish and identified mesozooplanktonic organisms. J Sea Res 85:277–291

    Article  Google Scholar 

  • Costalago D, Palomera I, Tirelli V (2014) Seasonal comparison of the diets of juvenile European anchovy Engraulis encrasicolus and sardine Sardina pilchardus in the Gulf of Lions. J Sea Res 89:64–72

    Article  Google Scholar 

  • Cury P, Roy C (1989) Optimal environmental window and pelagic fish recruitment success in upwelling areas. Can J Fish Aquat Sci 46:670–680

    Article  Google Scholar 

  • Cury P, Bakun A, Crawford RJM, Jarre A, Quinones RA, Shannon LJ, Verheye HM (2000) Small pelagics in upwelling systems: patterns of interaction and structural changes in “wasp-waist” ecosystems. ICES J Mar Sci 57:603–618

    Article  Google Scholar 

  • Cushing DH (1975) Marine ecology and fisheries. Cambridge University Press, Cambridge

    Google Scholar 

  • de Young B, Barange M, Beaugrand G, Harris R, Perry RI, Scheffer M, Werner F (2008) Regime shifts in marine ecosystems: detection, prediction and management. Trends Ecol Evol 23:402–409

    Article  Google Scholar 

  • Duffy-Anderson JT, Bailey K, Ciannelli L, Cury P, Belgrano A, Stenseth NC (2005) Phase transitions in marine fish recruitment processes. Ecol Complex 2:205–218

    Article  Google Scholar 

  • Dulvy NK, Sadovy Y, Reynolds JD (2003) Extinction vulnerability in marine populations. Fish Fish 4:25–64

    Article  Google Scholar 

  • Frank KT, Petrie B, Choi JS, Leggett WC (2005) Trophic cascades in a formerly cod-dominated ecosystem. Science 308:1621–1623

    Article  CAS  PubMed  Google Scholar 

  • Green BS (2008) Maternal effects in fish populations. Adv Mar Biol 54:1–105

    Article  PubMed  Google Scholar 

  • Hare JA, Cowen RK (1997) Size, growth, development, and survival of the planktonic larvae of Pomatomus saltatrix (Pisces: Pomatomidae). Ecology 78:2415–2431

    Article  Google Scholar 

  • Hare SR, Mantua NJ (2000) Empirical evidence for North Pacific regime shifts in 1977 and 1989. Prog Oceanogr 47:103–145

    Article  Google Scholar 

  • Heath MR (1992) Field investigations of the early life stages of marine fish. Adv Mar Biol 28:1–174

    Article  Google Scholar 

  • Hixon MA, Johnson DW, Sogard SM (2014) BOFFFFs: on the importance of conserving old-growth age structure in fishery populations. ICES J Mar Sci 71:2171–2185

    Article  Google Scholar 

  • Hjort J (1914) Fluctuations in the great fisheries of northern Europe viewed in the light of biological research. Rapp P-V Reun Cons Int Explor Mer 20:1–228

    Google Scholar 

  • Houde ED (1987) Fish early life dynamics and recruitment variability. Am Fish Soc Symp 2:17–29

    Google Scholar 

  • Hovenkamp F (1992) Growth-dependent mortality of larval plaice Pleuronectes platessa in the North Sea. Mar Ecol Prog Ser 82:95–101

    Article  Google Scholar 

  • Hsieh CH, Reiss CS, Hunter JR, Beddington JR, May RM, Sugihara G (2006) Fishing elevates variability in the abundance of exploited species. Nature 443:859–862

    Article  CAS  PubMed  Google Scholar 

  • Hufnagl M, Peck MA (2011) Physiological individual-based modelling of larval Atlantic herring (Clupea harengus) foraging and growth: insights on climate-driven life-history scheduling. ICES J Mar Sci 68:1170–1188

    Article  Google Scholar 

  • Hutchings JA (2014) Renaissance of a caveat: allee effects in marine fish. ICES J Mar Sci 71:2152–2157

    Article  Google Scholar 

  • Ito S, Kishi MJ, Kurita Y, Oozeki Y, Yamanaka Y, Megrey BA, Werner FE (2004) Initial design for a fish bioenergetics model of Pacific saury coupled to a lower trophic ecosystem model. Fish Oceanogr 13(Suppl 1):111–124

    Article  Google Scholar 

  • Ito S, Kishi MJ, Megrey BA, Rose KA, Werner FE (2006) Workshop on sardine and anchovy fluctuations. PICES Press 14:16–17

    Google Scholar 

  • Ito S, Rose KA, Miller AJ, Drinkwater K, Brander K, Overland JE, Sundby S, Curchitser E, Hurrell JW, Yamanaka Y (2010) Ocean ecosystem responses to future global change scenarios: a way forward. In: Barange M, Field JG, Harris RP, Hofmann EE, Perry RI, Werner FE (eds) Marine ecosystems and global change. Oxford University Press, New York, pp 287–322

    Chapter  Google Scholar 

  • Itoh S, Yasuda I, Nishikawa H, Sasaki H, Sasai Y (2009) Transport and environmental temperature variability of eggs and larvae of the Japanese anchovy (Engraulis japonicus) and Japanese sardine (Sardinops melanostictus) in the western North Pacific estimated via numerical particle-tracking experiments. Fish Oceanogr 18:118–133

    Article  Google Scholar 

  • Itoh S, Saruwatari T, Nishikawa H, Yasuda I, Komatsu K, Tsuda A, Setou T, Shimizu M (2011) Environmental variability and growth histories of larval Japanese sardine (Sardinops melanostictus) and Japanese anchovy (Engraulis japonicus) near the frontal area of the Kuroshio. Fish Oceanogr 20:114–124

    Article  Google Scholar 

  • Katsukawa T (2007) Fisheries impact on Japanese sardine. Nippon Suisan Gakkaishi 73:763–766 (in Japanese)

    Article  Google Scholar 

  • Kawasaki T (1983) Why do some pelagic fishes have wide fluctuations in their numbers? Biological basis of fluctuation from the viewpoint of evolutionary ecology. In: Sharp GD, Csirke J (eds) Proceedings of the expert consultation to examine changes in abundance and species composition of neritic fish resources, San Jose, 18–29 April 1983. FAO Fish Rep 291:1065–1080

    Google Scholar 

  • Kawasaki T, Omori M (1995) Possible mechanisms underlying fluctuations in the Far Eastern sardine population inferred from time series of two biological traits. Fish Oceanogr 4:238–242

    Article  Google Scholar 

  • Kim JY, Kim S, Choi YM, Lee JB (2006) Evidence of density-dependent effects on population variation of Japanese sardine (Sardinops melanosticta) off Korea. Fish Oceanogr 15:345–349

    Article  Google Scholar 

  • Kishi MJ, Kashiwai M, Ware DM, Megrey BA, Eslinger DL, Werner FE, Aita MN, Azumaya T, Fujii M, Hashimoto S, Huang D, Iizumi H, Ishida Y, Kang S, Kantakov GA, Kim HC, Komatsu K, Navrotsky VV, Smith SL, Tadokoro K, Tsuda A, Yamamura O, Yamanaka Y, Yokouchi K, Yoshie N, Zhang J, Zuenko YI, Zvalinsky VI (2007) NEMURO—a lower trophic level model for the North Pacific marine ecosystem. Ecol Model 202:12–25

    Article  Google Scholar 

  • Lankford TE, Billerbeck JM, Conover DO (2001) Evolution of intrinsic growth and energy acquisition rates. II. Trade-offs with vulnerability to predation in Menidia menidia. Evolution 55:1873–1881

    Article  PubMed  Google Scholar 

  • Lasker R (1975) Field criteria for survival of anchovy larvae: the relation between inshore chlorophyll maximum layers and successful first feeding. Fish Bull 73:453–462

    Google Scholar 

  • Leggett WC, Frank KT (2008) Paradigms in fisheries oceanography. Oceanogr Mar Biol Annu Rev 46:331–363

    Google Scholar 

  • Lluch-Belda D, Crawford RJM, Kawasaki T, MacCall AD, Parrish RH, Schwartzlose RA, Smith PE (1989) Worldwide fluctuations of sardine and anchovy stocks: the regime problem. S Afr J Mar Sci 8:195–205

    Article  Google Scholar 

  • Lluch-Belda D, Lluch-Cota DB, Hernandez-Vazquez S, Salinas-Zavala CA, Schwartzlose RA (1991) Sardine and anchovy spawning as related to temperature and upwelling in the California Current system. Calif Coop Ocean Fish Invest Rep 32:105–111

    Google Scholar 

  • Louw GG, van der Lingen CD, Gibbons MJ (1998) Differential feeding by sardine Sardinops sagax and anchovy Engraulis capensis recruits in mixed shoals. S Afr J Mar Sci 19:227–232

    Article  Google Scholar 

  • Mantua NJ, Hare SR (2002) The Pacific decadal oscillation. J Oceanogr 58:35–44

    Article  Google Scholar 

  • Meekan MG, Fortier L (1996) Selection for fast growth during the larval life of Atlantic cod Gadus morhua on the Scotian Shelf. Mar Ecol Prog Ser 137:25–37

    Article  Google Scholar 

  • Miller TJ, Crowder LB, Rice JA, Marschall EA (1988) Larval size and recruitment mechanisms in fishes: toward a conceptual framework. Can J Fish Aquat Sci 45:1657–1670

    Article  Google Scholar 

  • Munch SB, Conover DO (2003) Rapid growth results in increased susceptibility to predation in Menidia menidia. Evolution 57:2119–2127

    Article  PubMed  Google Scholar 

  • Myers RA, Barrowman NJ, Hutchings JA, Rosenberg AA (1995) Population dynamics of exploited fish stocks at low population levels. Science 269:1106–1108

    Article  CAS  Google Scholar 

  • Nash RDM, Dickey-Collas M, Kell LT (2009) Stock and recruitment in North Sea herring (Clupea harengus); compensation and depensation in the population dynamics. Fish Res 95:88–97

    Article  Google Scholar 

  • Nikolioudakis N, Isari S, Somarakis S (2014) Trophodynamics of anchovy in a non-upwelling system: direct comparison with sardine. Mar Ecol Prog Ser 500:215–229

    Article  Google Scholar 

  • Nishikawa H, Yasuda I (2008) Japanese sardine (Sardinops melanostictus) mortality in relation to the winter mixed layer depth in the Kuroshio Extension region. Fish Oceanogr 17:411–420

    Article  Google Scholar 

  • Nishikawa H, Yasuda I, Itoh S (2011) Impact of winter-to-spring environmental variability along the Kuroshio jet on the recruitment of Japanese sardine (Sardinops melanostictus). Fish Oceanogr 20:570–582

    Article  Google Scholar 

  • Nishikawa H, Yasuda I, Komatsu K, Sasaki H, Sasai Y, Setou T, Shimizu M (2013) Winter mixed layer depth and spring bloom along the Kuroshio front: implications for the Japanese sardine stock. Mar Ecol Prog Ser 487:217–229

    Article  Google Scholar 

  • Noto M, Yasuda I (1999) Population decline of the Japanese sardine, Sardinops melanostictus, in relation to sea surface temperature in the Kuroshio Extension. Can J Fish Aquat Sci 56:973–983

    Article  Google Scholar 

  • Okunishi T, Yamanaka Y, Ito S (2009) A simulation model for Japanese sardine (Sardinops melanostictus) migrations in the western North Pacific. Ecol Model 220:462–479

    Article  Google Scholar 

  • Okunishi T, Ito S, Ambe D, Takasuka A, Kameda T, Tadokoro K, Setou T, Komatsu K, Kawabata A, Kubota H, Ichikawa T, Sugisaki H, Hashioka T, Yamanaka Y, Yoshie N, Watanabe T (2012a) A modeling approach to evaluate growth and movement for recruitment success of Japanese sardine (Sardinops melanostictus) in the western Pacific. Fish Oceanogr 21:44–57

    Article  Google Scholar 

  • Okunishi T, Ito S, Hashioka T, Sakamoto TT, Yoshie N, Sumata H, Yara Y, Okada N, Yamanaka Y (2012b) Impacts of climate change on growth, migration and recruitment success of Japanese sardine (Sardinops melanostictus) in the western North Pacific. Clim Chang 115:485–503

    Article  Google Scholar 

  • Oozeki Y, Takasuka A, Kubota H, Barange M (2007) Characterizing spawning habitats of Japanese sardine (Sardinops melanostictus), Japanese anchovy (Engraulis japonicus), and Pacific round herring (Etrumeus teres) in the northwestern Pacific. Calif Coop Ocean Fish Invest Rep 48:191–203

    Google Scholar 

  • Oozeki Y, Takasuka A, Okamura H, Kubota H, Kimura R (2009) Patchiness structure and mortality of Pacific saury Cololabis saira larvae in the northwestern Pacific. Fish Oceanogr 18:328–345

    Article  Google Scholar 

  • Peck MA, Hufnagl M (2012) Can IBMs tell us why most larvae die in the sea? Model sensitivities and scenarios reveal research needs. J Mar Syst 93:77–93

    Article  Google Scholar 

  • Peck MA, Neuenfeldt S, Essington TE, Trenkel VM, Takasuka A, Gislason H, Dickey-Collas M, Andersen KH, Ravn-Jonsen L, Vestergaard N, Kvamsdal SF, Gårdmark A, Link J, Rice JC (2014) Forage fish interactions: a symposium on “Creating the tools for ecosystem-based management of marine resources”. ICES J Mar Sci 71:1–4

    Article  Google Scholar 

  • Pörtner HO, Peck MA (2010) Climate change effects on fishes and fisheries: towards a cause-and-effect understanding. J Fish Biol 77:1745–1779

    Article  PubMed  Google Scholar 

  • Robert D, Castonguay M, Fortier L (2007) Early growth and recruitment in Atlantic mackerel Scomber scombrus: discriminating the effects of fast growth and selection for fast growth. Mar Ecol Prog Ser 337:209–219

    Article  Google Scholar 

  • Robert D, Takasuka A, Nakatsuka S, Kubota H, Oozeki Y, Nishida H, Fortier L (2010) Predation dynamics of mackerel on larval and juvenile anchovy: is capture success linked to prey condition? Fish Sci 76:183–188

    Article  CAS  Google Scholar 

  • Rose KA, Cowan JH Jr, Winemiller KO, Myers RA, Hilborn R (2001) Compensatory density dependence in fish populations: importance, controversy, understanding and prognosis. Fish Fish 2:293–327

    Article  Google Scholar 

  • Rykaczewski RR, Checkley DM Jr (2008) Influence of ocean winds on the pelagic ecosystem in upwelling regions. Proc Natl Acad Sci USA 105:1965–1970

    Article  PubMed  Google Scholar 

  • Sakurai Y, Kidokoro H, Yamashita N, Yamamoto J, Uchikawa K, Takahara H (2013) Todarodes pacificus, Japanese common squid. In: Rosa R, O’Dor R, Pierce G (eds) Advances in squid biology, ecology and fisheries. Part II – Oegopsid squids. Nova Science Publishers, New York, pp 249–271

    Google Scholar 

  • Schwartzlose RA, Alheit J, Bakun A, Baumgartner TR, Cloete R, Crawford RJM, Fletcher WJ, Green-Ruiz Y, Hagen E, Kawasaki T, Lluch-Belda D, Lluch-Cota SE, MacCall AD, Matsuura Y, Nevárez-Martínez MO, Parrish RH, Roy C, Serra R, Shust KV, Ward MN, Zuzunaga JZ (1999) Worldwide large-scale fluctuations of sardine and anchovy populations. S Afr J Mar Sci 21:289–347

    Article  Google Scholar 

  • Shelton PA, Sinclair AF, Chouinard GA, Mohn R, Duplisea DE (2006) Fishing under low productivity conditions is further delaying recovery of Northwest Atlantic cod (Gadus morhua). Can J Fish Aquat Sci 63:235–238

    Article  Google Scholar 

  • Shoji J, Tanaka M (2006) Growth-selective survival in piscivorous larvae of Japanese Spanish mackerel Scomberomorus niphonius: early selection and significance of ichthyoplankton prey supply. Mar Ecol Prog Ser 321:245–254

    Article  Google Scholar 

  • Sirois P, Dodson JJ (2000) Critical periods and growth-dependent survival of larvae of an estuarine fish, the rainbow smelt Osmerus mordax. Mar Ecol Prog Ser 203:233–245

    Article  Google Scholar 

  • Suda M, Akamine T, Kishida T (2005) Influence of environment factors, interspecific-relationships and fishing mortality on the stock fluctuation of the Japanese sardine, Sardinops melanostictus, off the Pacific coast of Japan. Fish Res 76:368–378

    Article  Google Scholar 

  • Takahashi M, Watanabe Y (2005) Effects of temperature and food availability on growth rate during late larval stage of Japanese anchovy (Engraulis japonicus) in the Kuroshio–Oyashio transition region. Fish Oceanogr 14:223–235

    Article  Google Scholar 

  • Takahashi M, Watanabe Y, Yatsu A, Nishida H (2009) Contrasting responses in larval and juvenile growth to a climate-ocean regime shift between anchovy and sardine. Can J Fish Aquat Sci 66:972–982

    Article  Google Scholar 

  • Takasuka A, Aoki I, Mitani I (2003) Evidence of growth-selective predation on larval Japanese anchovy Engraulis japonicus in Sagami Bay. Mar Ecol Prog Ser 252:223–238

    Article  Google Scholar 

  • Takasuka A, Aoki I, Mitani I (2004a) Three synergistic growth-related mechanisms in the short-term survival of larval Japanese anchovy Engraulis japonicus in Sagami Bay. Mar Ecol Prog Ser 270:217–228

    Article  Google Scholar 

  • Takasuka A, Oozeki Y, Kimura R, Kubota H, Aoki I (2004b) Growth-selective predation hypothesis revisited for larval anchovy in offshore waters: cannibalism by juveniles versus predation by skipjack tunas. Mar Ecol Prog Ser 278:297–302

    Article  Google Scholar 

  • Takasuka A, Oozeki Y, Aoki I (2007a) Optimal growth temperature hypothesis: why do anchovy flourish and sardine collapse or vice versa under the same ocean regime? Can J Fish Aquat Sci 64:768–776

    Article  Google Scholar 

  • Takasuka A, Aoki I, Oozeki Y (2007b) Predator-specific growth-selective predation on larval Japanese anchovy Engraulis japonicus. Mar Ecol Prog Ser 350:99–107

    Article  Google Scholar 

  • Takasuka A, Oozeki Y, Kubota H (2008a) Multi-species regime shifts reflected in spawning temperature optima of small pelagic fish in the western North Pacific. Mar Ecol Prog Ser 360:211–217

    Article  Google Scholar 

  • Takasuka A, Oozeki Y, Kubota H, Lluch-Cota SE (2008b) Contrasting spawning temperature optima: why are anchovy and sardine regime shifts synchronous across the North Pacific? Prog Oceanogr 77:225–232

    Article  Google Scholar 

  • Takasuka A, Kubota H, Oozeki Y (2008c) Spawning overlap of anchovy and sardine in the western North Pacific. Mar Ecol Prog Ser 366:231–244

    Article  Google Scholar 

  • Takasuka A, Sakai A, Aoki I (2017) Dynamics of growth-based survival mechanisms in Japanese anchovy (Engraulis japonicus) larvae. Can J Fish Aquat Sci 74:812–823

    Article  Google Scholar 

  • Tanaka H, Aoki I, Ohshimo S (2006) Feeding habits and gill raker morphology of three planktivorous pelagic fish species off the coast of northern and western Kyushu in summer. J Fish Biol 68:1041–1061

    Article  Google Scholar 

  • van der Lingen CD, Hutchings L, Field JG (2006a) Comparative trophodynamics of anchovy Engraulis encrasicolus and sardine Sardinops sagax in the southern Benguela: are species alternations between small pelagic fish trophodynamically mediated? Afr J Mar Sci 28:465–477

    Article  Google Scholar 

  • van der Lingen CD, Fréon P, Fairweather TP, van der Westhuizen JJ (2006b) Density-dependent changes in reproductive parameters and condition of southern Benguela sardine Sardinops sagax. Afr J Mar Sci 28:625–636

    Article  Google Scholar 

  • van der Lingen CD, Bertrand A, Bode A, Brodeur R, Cubillos LA, Espinoza P, Friedland K, Garrido S, Irigoien X, Miller T, Möllmann C, Rodriguez-Sanchez R, Tanaka H, Temming A (2009) Trophic dynamics. In: Checkley D, Alheit J, Oozeki Y, Roy C (eds) Climate change and small pelagic fish. Cambridge University Press, Cambridge, pp 112–157

    Chapter  Google Scholar 

  • van der Lingen CD, Lluch-Cota S, Checkley D, Bernal M, Herzka S, Takasuka A (2010) SPACC II planning meeting, 24–26 February 2010, La Paz, Mexico. GLOBEC International Newsletter 16:25–26

    Google Scholar 

  • Ware DM, Thomson RE (2005) Bottom-up ecosystem trophic dynamics determine fish production in the northeast Pacific. Science 308:1280–1284

    Article  CAS  PubMed  Google Scholar 

  • Werner FE, Ito S, Megrey BA, Kishi MJ (2007) Synthesis of the NEMURO model studies and future directions of marine ecosystem modeling. Ecol Model 202:211–223

    Article  Google Scholar 

  • Yamamoto J, Miyanaga S, Fukui S, Sakurai Y (2012) Effect of temperature on swimming behavior of paralarvae of the Japanese common squid Todarodes pacificus. Bull Jpn Soc Fish Oceanogr 76:18–23

    Google Scholar 

  • Yasue N, Takasuka A, Shirakihara K (2011) Interspecific comparisons of growth and diet among late larvae of three co-occurring clupeoid species in the Kii Channel, Japan. Mar Biol 158:1709–1720

    Article  Google Scholar 

  • Yasue N, Doiuchi R, Takasuka A (2014) Trophodynamic similarities of three sympatric clupeoid species throughout their life histories in the Kii Channel as revealed by stable isotope approach. ICES J Mar Sci 71:44–55

    Article  Google Scholar 

  • Yatsu A, Watanabe T, Ishida M, Sugisaki H, Jacobson LD (2005) Environmental effects on recruitment and productivity of Japanese sardine Sardinops melanostictus and chub mackerel Scomber japonicus with recommendations for management. Fish Oceanogr 14:263–278

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akinori Takasuka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Japan KK and the Japanese Society of Fisheries Science

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Takasuka, A. (2018). Biological Mechanisms Underlying Climate Impacts on Population Dynamics of Small Pelagic Fish. In: Aoki, I., Yamakawa, T., Takasuka, A. (eds) Fish Population Dynamics, Monitoring, and Management. Fisheries Science Series. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56621-2_3

Download citation

Publish with us

Policies and ethics