Reproductive Strategies in Planarians: Insights Gained from the Bioassay System for Sexual Induction in Asexual Dugesia ryukyuensis Worms

Part of the Diversity and Commonality in Animals book series (DCA)


Some freshwater planarians (Platyhelminthes, Turbellaria, Seriata, and Tricladida) reproduce asexually by transverse fission and subsequent regeneration. Depending on environmental conditions, some asexual worms also develop complex hermaphroditic reproductive organs from planarian pluripotent stem cells, or neoblasts. Acquired sexual worms then mate, and eventually lay a cocoon filled with several fertilized eggs and a large number of yolk gland cells. The mechanisms underlying the switch from an asexual to a sexual state and the differentiation of germ cells from adult stem cells are of interest because they represent fundamental aspects of both reproductive biology and developmental biology. To study this mechanism, an experimental system was established in a triploid asexual strain, the OH strain of Dugesia ryukyuensis (Kobayashi et al. 1999). In this assay system, asexual worms acquire sexuality and cease asexual reproduction by transverse fission when experimentally dosed with sex-inducing substances produced by sexually mature planarians. Acquired sexual worms are then able to produce sex-inducing substances by themselves to maintain a sexual state, without the intake of sex-inducing substances. Interestingly, triploid acquired sexual worms sexually produce four types of offspring, namely, diploid asexual worms, diploid innate sexual worms, triploid asexual worms, and triploid innate sexual worms. Although the relationship between sexuality and ploidy has not yet been clarified, innate sexuality noticeably differs to acquired sexuality because worms never convert to an asexual state. This review discusses insights obtained from the study of these intricate biological phenomena to help elucidate the mechanisms used for reproductive strategies in planarians, including that of switching from an asexual to a sexual state.


Germ cells Planarian Dugesia ryukyuensis Asexual reproduction Sexual reproduction Sexual induction Sex-inducing substance 



We thank Dr. Yuni Nakauchi’s group (Yamagata University) for providing invaluable assistance with collecting B. brunnea and S. auriculata. We also thank Dr. Hidefumi Orii (University of Hyogo), Dr. Kimitoshi Sakamoto (Hirosaki University), and Dr. P. A. Newmark (University of Wisconsin-Madison) for their kind gifts of D. japonica worms and sexual specimens of S. mediterranea (Dr. Orii), G. dorotocephala worms (Dr. Sakamoto), and asexual specimens of S. mediterranea (Dr. Newmark). We also thank Miss Sachiko Arioka for producing 3D images. This study was supported in part by a Grant-in-Aid for Scientific Research (Nos. 26114501 [KK], 15K07121 [KK], and 25650103 [TM]) from the Ministry of Science, Culture, Sports and Education, Japan, The NAITO Foundation (KK), The Sumitomo Foundation (TM), and Ryobi Teien Memory Foundation (TM).

Supplementary material

Movie 9.1

(MOV 1484 kb)

Movie 9.2

(MOV 1361 kb)


  1. Baguñà J, Saló E, Auladell C (1989) Regeneration and pattern formation in planarians III. Evidence that neoblasts are totipotent stem cells and the source of blastema cells. Development 107:77–86Google Scholar
  2. Benazzi LG (1966a) Amphimixis and pseudogamy in freshwater triclads: experimental reconstitution of polyploid pseudogamic biotypes. Chromosoma 20:1–14CrossRefGoogle Scholar
  3. Benazzi M (1966b) Considerations on the neoblasts of planarians on the basis of certain karyological evidence. Chromosoma 19:14–27CrossRefPubMedGoogle Scholar
  4. Benazzi LG (1970) Gametogesis and egg fertilization in planarians. Int Rev Cytol 27:101–179CrossRefGoogle Scholar
  5. Benazzi M (1974) Fissioning in planarians from a genetic standpoint. In: Riser NW, Morse MP (eds) Biology of the Turbellaria. McGraw-Hill, New York, pp 476–492Google Scholar
  6. Benazzi M (1982) Speciation events evidenced in Turbellaria. In: Barigozzi C (ed) Mechanisms of speciation. Alan R Liss, New York, pp 307–344Google Scholar
  7. Benazzi M, Grasso M (1977) Comparative research on the sexualisation of fissiparous planarians treated with substances contained in sexual planarians. Monitore Zool Ital 11:9–19Google Scholar
  8. Best JB, Goodman AB, Pigeon A (1969) Fissioning in planarians: control by the brain. Science 164:565–566CrossRefPubMedGoogle Scholar
  9. Best JB, Abelein M, Kreutzer E, Pigon P (1975) Cephalic mechanism for social control of fissioning in planarians III: central nervous system centers of facilitation and inhibition. J Comp Physiol Psychol 89:923–932CrossRefPubMedGoogle Scholar
  10. Beukeboom LW, Vrijenhoek RC (1998) Evolutionary genetics and ecology of sperm-dependent parthenogenesis. J Evol Biol 11:755–782CrossRefGoogle Scholar
  11. Beukeboom LW, Weinzierl RP, Reed KM, Michiels NK (1996) Distribution and origin of chromosomal races in the freshwater planarian Dugesia polychroa (Turbellaria: Tricladida). Hereditas 124:7–15CrossRefGoogle Scholar
  12. Cardona A, Hartenstein V, Romero R (2005) The embryonic development of the triclad Schmidtea polychroa. Dev Genes Evol 215:109–131CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chinone A, Nodono H, Matsumoto M (2014) Triploid planarian reproduces truly bisexually with euploid gametes produced through a different meiotic system between sex. Chromosoma 123:265–272CrossRefPubMedGoogle Scholar
  14. Collins JJ III, Hou X, Romanova EV, Lambrus BG, Miller CM, Saberi A, Sweedler JV, Newmark PA (2010) Genome-wide analysis reveal a role for peptide hormones in planarian germline development. PLoS Biol 8:1–21Google Scholar
  15. Curtis W (1902) The life history, the normal fission and the reproductive organs of Planaria maculata. Proc Boston Soc Nat Hist 30:515–559Google Scholar
  16. Curtis WC, Schulze LM (1924) Formative cells of planarians. Anat Rec 29:105Google Scholar
  17. D’Souza TG, Michiels NK (2008) Correlations between sex rate estimates and fitness across predominantly parthenogenetic flatworm populations. J Evol Biol 21:276–286CrossRefPubMedGoogle Scholar
  18. D’Souza TG, Michiels NK (2010) The costs and benefits of occasional sex: theoretical predictions and a case study. J Hered 101:S34–S41CrossRefPubMedGoogle Scholar
  19. D’Souza TG, Storhas M, Schulenburg H, Beukeboom LW, Michiels NK (2004) Occasional sex in an ‘asexual’ polyploidy hermaphrodite. Proc R Soc Lond B 271:1001–1007CrossRefGoogle Scholar
  20. D’Souza TG, Storhas M, Michiels NK (2005) The effect of ploidy level on fitness in parthenogenetic flatworms. Biol J Linn Soc 85:191–198CrossRefGoogle Scholar
  21. D’Souza TG, Schulte RD, Schulenburg H, Michiels NK (2006) Paternal inheritance in parthenogenetic forms of the planarian Schmidtea polychroa. Heredity 97:97–101CrossRefPubMedGoogle Scholar
  22. Fukushima M, Funabiki I, Hashizume T, Osada K, Yoshida W, Ishida S (2008) Detection and changes in levels of testosterone during spermatogenesis in the freshwater planarian Bdellocephala brunnea. Zool Sci 25:760–765CrossRefPubMedGoogle Scholar
  23. Grasso M, Benazzi M (1973) Genetic and physiologic control of fissioning and sexuality in planarians. J Embryol Exp Morpholog 30:317–328Google Scholar
  24. Gremigni V, Banchetti R (1972a) Submicroscopic morphology of hyperplasic ovaries of ex-fissiparous individuals in Dugesia gonocephala s.l. Acc Naz Lincei 52:539–543Google Scholar
  25. Gremigni V, Banchetti R (1972b) The origin of hyperplasia in the ovaries of ex-fissiparous specimens of Dugesia gonocephala s.l. Acc Naz Lincei 53:477–448Google Scholar
  26. Gremigni V, Miceli C, Picano E (1980a) On the role of germ cells in planarian regeneration. I. A karyological investigation. J Embryol Exp Morpholog 55:53–63Google Scholar
  27. Gremigni V, Miceli C, Picano E (1980b) On the role of germ cells in planarian regeneration. II. Cytophotometric analysis of the nuclear Feulgen-DNA content in cells of regenerated somatic tissues. J Embryol Exp Morpholog 55:65–76Google Scholar
  28. Gremigni V, Miceli C, Picano E (1982) Evidence of male germ cell redifferentiation into female germ cells in planarian regeneration. J Embryol Exp Morpholog 70:29–36Google Scholar
  29. Hamase K (2015) Recent advances on d-amino acid research. J Pharm Biomed Anal 116:1CrossRefPubMedGoogle Scholar
  30. Harrath H, Sluys R, Zghal F, Tekaya S (2009) First report of adelphophagy in flatworms during the embryonic development of the planarian Schmidtea mediterranea (Benazzi, Baguñà, Ballester, Puccinelli & Del Papa, 1975) (Platyhelminthes, Tricladida). Invert Reprod Develop 53:117–124CrossRefGoogle Scholar
  31. Harrath AH, Semlali A, Mansour L, Ahmed M, Sirotkin AV, Al Omar SY, Arfah M, Al Anazi MS, Alhazza IM, Nyengaard JR, Alwasel S (2014) Infertility in the hyperplasic ovary of freshwater planarians: the role of programmed cell death. Cell Tissue Res 358:607–620CrossRefPubMedGoogle Scholar
  32. Hase S, Kobayashi K, Koyanagi R, Hoshi M, Matsumoto M (2003) Transcriptional pattern of a novel gene, expressed specifically after the point-of-no-return during sexualization, in planaria. Dev Genes Evol 212:585–592PubMedGoogle Scholar
  33. Hauser J (1987) Sexualization of Dugesia anderlani by feeding. Acta Biol Leopoldensia 9:111–128Google Scholar
  34. Hoshi M, Kobayashi K, Arioka S, Hase S, Matsumoto M (2003) Switching from asexual to sexual reproduction in the planarian Dugesia ryukyuensis. Integr Comp Biol 43:242–246CrossRefPubMedGoogle Scholar
  35. Inoue T, Kumamoto H, Okamoto K, Umesono Y, Sakai M, Sanchez Alvarado A, Agata K (2004) Morphological and functional recovery of the planarian photosensing system during head regeneration. Zool Sci 21:275–283CrossRefPubMedGoogle Scholar
  36. Inoue T, Yamashita T, Agata K (2014) Thermosensory signaling by TRPM is processed by brain serotonergic neurons to produce planarian thermotaxis. J Neurosci 34:15701–15714CrossRefPubMedGoogle Scholar
  37. Inoue T, Hoshino H, Yamashita T, Shimoyama S, Agata K (2015) Planarian shows decision-making behavior in response to multiple stimuli by integrative brain function. Zool Lett 1:7CrossRefGoogle Scholar
  38. Ishizuka H, Maezawa T, Kawauchi J, Nodono H, Hirao Y, Nishimura O, Nakagawa H, Sekii K, Tasaka K, Tarui H, Agata K, Hoshi M, Kobayashi K, Sakakibara Y, Matsumoto M (2007) The Dugesia ryukyuensis database as a molecular resource for studying switching of the reproductive system. Zool Sci 24:31–37CrossRefPubMedGoogle Scholar
  39. Jenkins MM (1967) Aspects of planarian biology and behavior. In: Corning WC, Ratner SC (eds) Chemistry of learning. Plenum Press, New York, pp 117–143Google Scholar
  40. Kawakatsu M, Oki I, Tamura S, Sugino H (1976) Studies on the morphology, karyology and taxonomy of the Japanese freshwater planarian Dugesia japonica Ichikawa et Kawakatsu, with a description of a new subspecies, Dugesia japonica ryukyuensis subspec. Bull Fuji Womens Coll 23:127–132Google Scholar
  41. Kawakatsu M, Oki I, Tamura S (1995) Taxonomy and geographical distribution of Dugesia japonica and D. ryukyuensis in the Far East. Hydrobiologia 305:55–61CrossRefGoogle Scholar
  42. Kenk R (1937) Sexual and asexual reproduction in Euplanaria tigrina (Girard). Biol Bull 73:280–294CrossRefGoogle Scholar
  43. Kenk R (1941) Induction of sexuality in the asexual form of Dugesia tigrina. J Exp Zool 87:55–69Google Scholar
  44. Khoronenkova SV, Tishkov VI (2008) d-amino acid oxidase: physiological role and applications. Biochemistry (Mosc) 73:1511–1518CrossRefGoogle Scholar
  45. Kobayashi K, Hoshi M (2002) Switching from asexual to sexual reproduction in the planarian Dugesia ryukyuensis: change of the fissiparous capacity along with the sexualizing process. Zool Sci 19:661–666CrossRefPubMedGoogle Scholar
  46. Kobayashi K, Hoshi M (2011) Sex-inducing effect of a hydrophilic fraction on reproductive switching in the planarian Dugesia ryukyuensis (Seriata, Tricladida). Front Zool 8:24CrossRefGoogle Scholar
  47. Kobayashi S, Yamada M, Asaoka M, Kitamura T (1996) Essential role of the posterior morphogen nanos for germline development in Drosophila. Nature 380:708–711CrossRefGoogle Scholar
  48. Kobayashi K, Koyanagi R, Matsumoto M, Cabrera JP, Hoshi M (1999) Switching from asexual to sexual reproduction in the planarian Dugesia ryukyuensis: bioassay system and basic description of sexualizing process. Zool Sci 16:291–298CrossRefGoogle Scholar
  49. Kobayashi K, Arioka S, Hoshi M (2002a) Seasonal changes in the sexualization of the planarian Dugesia ryukyuensis. Zool Sci 19:1267–1278CrossRefPubMedGoogle Scholar
  50. Kobayashi K, Arioka S, Hase S, Hoshi M (2002b) Signification of the sexualizing substance produced by the sexualized planarians. Zool Sci 19:667–672CrossRefPubMedGoogle Scholar
  51. Kobayashi K, Ishizu H, Arioka S, Cabrera JP, Hoshi M, Matsumoto M (2008a) Production of diploid and triploid offspring by inbreeding of the triploid planarian Dugesia ryukyuensis. Chromosoma 117:289–296CrossRefPubMedGoogle Scholar
  52. Kobayashi K, Hashiguchi T, Ichikawa T, Ishino Y, Hoshi M, Matsumoto M (2008b) Neoblast-enriched fraction rescues eye formation in eye-defective planarian ‘menashi’ Dugesia ryukyuensis. Develop Growth Differ 50:689–696CrossRefGoogle Scholar
  53. Kobayashi K, Arioka S, Hoshi M, Matsumoto M (2009) Production of asexual and sexual offspring in the triploid planarian Dugesia ryukyuensis. Integr Zool 4:265–271CrossRefPubMedGoogle Scholar
  54. Kobayashi K, Maezawa T, Nakagawa H, Hoshi M (2012) Existence of two sexual races in the planarian species switching between asexual and sexual reproduction. Zool Sci 29:265–272CrossRefPubMedGoogle Scholar
  55. Kobayashi K, Maezawa T, Tanaka H, Onuki H, Horiguchi Y, Hirota H, Ishida T, Horiike K, Agata Y, Aoki M, Hoshi M, Matsumoto M (2017) The identification of d-tryptophan as a bioactive substance for postembryonic ovarian development in the planarian Dugesia ryukyuensis. Sci Rep 7: 45175CrossRefPubMedPubMedCentralGoogle Scholar
  56. Lange CS, Gilbert CW (1968) Studies on the cellular basis of radiation lethality: III. The measurement of stem-cell repopulation probability. Int J Radiat Biol 14:373–388Google Scholar
  57. Maezawa T, Aria K, Shigenobu S, Kobayashi S (2009) Expression of the apoptosis inducer gene head involution defective in primordial germ cells of the Drosophila embryo requires eiger, p53, and loki function. Develop Growth Differ 51:453–461CrossRefGoogle Scholar
  58. Maezawa T, Tanaka H, Nakagawa H, Ono M, Aoki M, Matsumoto M, Ishida T, Horiike K, Kobayashi K (2014) Planarian d-amino acid oxidase is involved in ovarian development during sexual induction. Mech Dev 132:69–78CrossRefPubMedGoogle Scholar
  59. Miyashita H, Nakagawa H, Kobayashi K, Hoshi M, Matsumoto M (2011) Effects of 17ß-estradiol and bisphenol A on the formation of reproductive organs in planarian. Biol Bull 220:47–56CrossRefPubMedGoogle Scholar
  60. Morita M (1990) Photoperiod and melatonin control of planarian asexual reproduction. In: Hoshi M, Yamashita O (eds) Advances in invertebrate reproduction 5. Elsevier Science Publishers, Amsterdam, pp 33–36Google Scholar
  61. Nagata Y (1992) Involvement of d-amino acid oxidase in elimination of d-serine in mouse brain. Experientia 48:753–755CrossRefPubMedGoogle Scholar
  62. Nakagawa H, Ishizu H, Chinone A, Kobayashi K, Matsumoto M (2012a) The Dr-nanos gene is essential for germ cell specification in the planarian Dugesia ryukyuensis. Int J Dev Biol 56:165–171CrossRefPubMedPubMedCentralGoogle Scholar
  63. Nakagawa H, Ishizu H, Hasegawa R, Kobayashi K, Matsumoto M (2012b) Drpiwi-1 is essential for germline cell formation during sexualization of the planarian Dugesia ryukyuensis. Dev Biol 361:167–176CrossRefPubMedGoogle Scholar
  64. Newmark PA, Sánchez Alvarado A (2000) Bromodeoxyuridine specifically labels the regenerative stem cells of planarians. Dev Biol 220:142–153CrossRefPubMedPubMedCentralGoogle Scholar
  65. Newmark PA, Sánchez Alvarado A (2002) Not your father’s planarian: a classic model enters the era of functional genomics. Nat Rev Genet 3:210–219CrossRefPubMedPubMedCentralGoogle Scholar
  66. Nishikawa T (2005) Metabolism and functional roles of endogenous d-serine in mammalian brains. Biol Pharm Bull 28:1561–1565CrossRefGoogle Scholar
  67. Nodono H, Ishino Y, Hoshi M, Matsumoto M (2012) Stem cells from innate sexual but acquired sexual planarians have the capability to form a sexual individual. Mol Reprod Dev 79:757–766CrossRefPubMedGoogle Scholar
  68. Oki I, Tamura S, Yamayoshi T, Kawakatsu M (1981) Karyological and taxonomic studies of Dugesia japonica Ichikawa et Kawakatsu in the Far East. Hydrobiologia 84:53–68CrossRefGoogle Scholar
  69. Okugawa KI, Kawakatsu M (1954) Studies on the fission of Japanese fresh-water planaria, Dugesia gonocephala (Dugès) III. Comparative studies on breeding and fission frequencies of sexual and assumed asexual races which had been collected in ten localities in Japan; with an additional study on the fission plane. Bull Kyoto Gakugei Univ Ser B 5:42–52. (In Japanese)Google Scholar
  70. Orii H, Sakurai T, Watanabe K (2005) Distribution of the stem cells (neoblasts) in the planarian Dugesia japonica. Dev Genes Evol 215:143–157CrossRefPubMedGoogle Scholar
  71. Panatier A, Theodosis DT, Mothet JP, Touquet B, Pollegioni L, Poulain DA, Oliet SH (2006) Glia-derived d-serine controls NMDA receptor activity and synaptic memory. Cell 125:775–784CrossRefPubMedGoogle Scholar
  72. Pearse V, Pearse J, Buchsbaum M, Buchsbaum R (1987) Flatworm body plan: bilateral symmetry, three layers of cells, organ-system level of construction, regeneration. In: Living invertebrates. The Boxwood Press, Pacific Grove, pp 204–221Google Scholar
  73. Pollegioni L, Piubelli L, Sacchi S, Pilone MS, Molla G (2007) Physiological functions of d-amino acid oxidases: from yeast to humans. Cell Mol Life Sci 64:1373–1394CrossRefPubMedGoogle Scholar
  74. Sakurai T (1981) Sexual induction by feeding in an asexual strain of the fresh-water planarian, Dugesia japonica japonica. Annot Zool Jpn 54:103–112Google Scholar
  75. Sakurai T (1991) An electron-microscopic study of syncytium formation during early embryonic development of the freshwater planarian Bdellocephala brunnea. Hydrobiologia 227:113–118CrossRefGoogle Scholar
  76. Saló E, Baguñà J (1985) Cell movement in intact and regenerating planarians. Quantitation using chromosomal, nuclear and cytoplasmic markers. J Embryol Exp Morpholog 89:57–70Google Scholar
  77. Saló E, Baguñà J (2002) Regeneration in planarians and other worms: new findings, new tools, and new perspectives. J Exp Zool 292:528–539CrossRefPubMedGoogle Scholar
  78. Sánchez Alvarado A, Tsonis PA (2006) Bridging the regeneration gap: genetic insights from diverse animal models. Nat Rev Genet 7:873–884CrossRefPubMedGoogle Scholar
  79. Sato Y, Kobayashi K, Matsumoto M, Hoshi M, Negishi S (2005) Comparative study of eye defective worm ‘menashi’ and regenerating wild-type in planarian, Dugesia ryukyuensis. Pigment Cell Res 18:86–91CrossRefPubMedGoogle Scholar
  80. Shibata N, Hayashi T, Fukumura R, Fujii J, Kudome-Takamatsu T, Nishimura O, Sano S, Son F, Suzuki N, Araki R, Abe M, Agata K (2012) Comprehensive gene expression analyses in pluripotent stem cells of a planarian, Dugesia japonica. Int J Dev Biol 56:93–102CrossRefPubMedPubMedCentralGoogle Scholar
  81. Stöck M, Lamatsc DK, Steinlein C, Epplen JT, Grosse W-R, Hock R, Klapperstück T, Lampert KP, Scheer U, Schmid M, Schartl M (2002) A bisexually reproducing all-triploid vertebrate. Nat Genet 30:325–328CrossRefPubMedGoogle Scholar
  82. Tamura S, Oki I, Kawakatsu M (1995) A review of chromosomal variation in Dugesia japonica and D. ryukyuensis in the Far East. Hydrobiologia 305:79–84CrossRefGoogle Scholar
  83. Tamura S, Yamamoto K, Takai M, Oki I, Kawakatsu (1998) Karyology and biogeography of Dugesia japonica and Dugesia ryukyuensis in Kyushu, southern Japan. Hydrobiologia 383:321–327CrossRefGoogle Scholar
  84. Tanaka H, Yamamoto A, Ishida T, Horiike K (2007) Simultaneous measurement of d-serine dehydratase and d-amino acid oxidase activities by the detection of 2-oxo-acid formation with reverse-phase high-performance liquid chromatography. Anal Biochem 362:83–88CrossRefPubMedGoogle Scholar
  85. Teshirogi W (1986) On the origin of neoblasts in freshwater planarians (Turbellaria). Hydrobiologia 132:207–216CrossRefGoogle Scholar
  86. Vowinckel C (1970) The role of illumination and temperature in the control of sexual reproduction in the planarian Dugesia tigrina (Girard). Biol Bull 138:77–87CrossRefGoogle Scholar
  87. Vowinckel C, Marsden JR (1971a) Reproduction of Dugesia tigrina under short-day and long-day conditions at different temperatures. I. Sexually derived individuals. J Embryol Exp Morpholog 26:587–598Google Scholar
  88. Vowinckel C, Marsden JR (1971b) Reproduction of Dugesia tigrina under short-day and long-day conditions at different temperatures. II. Asexually derived individuals. J Embryol Exp Morpholog 26:599–609Google Scholar
  89. Wagner DE, Wang IE, Reddien PW (2011) Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration. Science 332:811–816CrossRefPubMedPubMedCentralGoogle Scholar
  90. Wenemoser D, Reddien PW (2010) Planarian regeneration involves distinct stem cell responses to wounds and tissue absence. Dev Biol 344:979–991CrossRefPubMedPubMedCentralGoogle Scholar
  91. Williams G (1966) Adaptation and natural selection. Princeton University Press, PrincetonGoogle Scholar
  92. Wolff E, Dubois MF (1948) Sur la migration des cellules de régénération chez les planaires. Rev Suisse Zool 55:218–227CrossRefGoogle Scholar
  93. Yamamoto A, Tanaka H, Ishida T, Horiike K (2010) d-aspartate oxidase localisation in pituitary and pineal glands of the female pig. J Neuroendocrinol 22:1165–1172CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Advanced Science Course, Department of Integrated Science and TechnologyNational Institute of Technology, Tsuyama CollegeOkayamaJapan
  2. 2.Department of Biology, Faculty of Agriculture and Life ScienceHirosaki UniversityHirosakiJapan

Personalised recommendations