Reproductive Strategies in Marine Hydrozoan Jellyfish: Sexual Medusae and Asexual Polyps

Part of the Diversity and Commonality in Animals book series (DCA)


Hydrozoan jellyfish belong to the phylum Cnidaria and generally have radial symmetry with diploblastic layers. Many species of hydrozoan jellyfish have two characteristic forms: a sessile polyp and a free-swimming medusa. Sessile polyps multiply through asexual reproduction, whereas free-swimming medusae undergo sexual reproduction by releasing eggs and sperm. Although these reproductive systems are known to be adaptations to seasonal changes in the physical environment of the sea, little has been written about when and exactly how hydrozoan jellyfish carry out asexual and sexual reproduction in nature. Here, we describe the life cycle of hydrozoan jellyfish, including polyp reproduction, medusa formation, oocyte maturation, spawning, fertilization, and metamorphosis. We discuss current research on the asexual and sexual reproductive systems of three marine hydrozoan species: Cytaeis uchidae, Cladonema pacificum, and Clytia hemisphaerica.


Reproduction Life cycle Oocyte maturation Spawning Fertilization Metamorphosis 



This work was supported in part by JSPS KAKENHI Grant Numbers 26440177, 26840073, 26711009, 17K07482.


  1. Amiel A, Houliston E (2009) Three distinct RNA localization mechanisms contribute to oocyte polarity establishment in the cnidarian Clytia hemisphaerica. Dev Biol 327(1):191–203CrossRefPubMedGoogle Scholar
  2. Amiel A, Leclère L, Robert L, Chevalier S, Houliston E (2009) Conserved functions for Mos in eumetazoan oocyte maturation revealed by studies in a cnidarian. Curr Biol 19(4):305–311CrossRefPubMedGoogle Scholar
  3. Arai S, Ferdinandus TS, Ishiwata S, Sato H, Suzuki M (2015) Micro-thermography in millimeter-scale animals by using orally-dosed fluorescent nanoparticle thermosensors. Analyst 140(22):7534–7539CrossRefPubMedGoogle Scholar
  4. Arakawa M, Takeda N, Tachibana K, Deguchi R (2014) Polyspermy block in jellyfish eggs: collaborative controls by Ca2+ and MAPK. Dev Biol 392(1):80–92CrossRefPubMedGoogle Scholar
  5. Babonis LS, Martindale MQ (2014) Old cell, new trick? Cnidocytes as a model for the evolution of novelty. Integr Comp Biol 54(4):714–722CrossRefPubMedPubMedCentralGoogle Scholar
  6. Berg C, Kirby C, Kline D, Jaffe LA (1986) Fertilization potential and polyspermy prevention in the egg of the hydrozoan Hydractinia echinata. Biol Bull (Woods Hole, Mass) 171(2):485Google Scholar
  7. Bosch TCG (2007) Why polyps regenerate and we don’t: towards a cellular and molecular framework for Hydra regeneration. Dev Biol 303(2):421–433CrossRefPubMedGoogle Scholar
  8. Calder DR (2012) On a collection of hydroids (Cnidaria, Hydrozoa, Hydroidolina) from the west coast of Sweden, with a checklist of species from the region. Zootaxa 3171:1–77Google Scholar
  9. Carré D, Carré C (2000) Origin of germ cells, sex determination, and sex inversion in medusae of the genus Clytia (Hydrozoa, Leptomedusae): the influence of temperature. J Exp Zool 287(3):233–242CrossRefPubMedGoogle Scholar
  10. Chen C, Buhl E, Xu M, Croset V, Rees JS, Lilley KS, Benton R, Hodge JJ, Stanewsky R (2015) Drosophila Ionotropic Receptor 25a mediates circadian clock resetting by temperature. Nature 527(7579):516–520CrossRefPubMedGoogle Scholar
  11. Daly M, Brugler MR, Cartwright P, Collins AG, Dawson MN, Fautin DG, France SC, McFadden CS, Opresko DM, Rodriguez E, Romano SL, Stake JL (2007) The phylum Cnidaria: a review of phylogenetic patterns and diversity 300 years after Linnaeus. Zootaxa 1668:127–182Google Scholar
  12. Davison J (1976) Hydra hymanae: regulation of the life cycle by time and temperature. Science 194(4265):618–620CrossRefPubMedGoogle Scholar
  13. Deguchi R, Itoh T (2005) Methods for collecting and breeding the hydrozoan jellyfish Cladonema pacificum: aim for its use for academic research and education. Bull Miyagi Univ Edu 40:107–119. (in Japanese)Google Scholar
  14. Deguchi R, Kondoh E, Itoh J (2005) Spatiotemporal characteristics and mechanisms of intracellular Ca2+ increases at fertilization in eggs of jellyfish (Phylum Cnidaria, Class Hydrozoa). Dev Biol 279(2):291–307CrossRefPubMedGoogle Scholar
  15. Deguchi R, Takeda N, Stricker SA (2011) Comparative biology of cAMP-induced germinal vesicle breakdown in marine invertebrate oocytes. Mol Reprod Dev 78(10–11):708–725CrossRefPubMedGoogle Scholar
  16. Dunlap JC, Loros JJ, DeCoursey PJ (2004) Chronobiology: biological timekeeping. Sinauer Associates, Sunderland, p 382Google Scholar
  17. Freeman G (1981) The role of polarity in the development of the hydrozoan planula larva. Roux Arch Dev Biol 190(3):168–184CrossRefGoogle Scholar
  18. Freeman G (1987) The role of oocyte maturation in the ontogeny of the fertilization site in the hydrozoan Hydractinia echinata. Roux Arch Dev Biol 196(2):83–92CrossRefPubMedGoogle Scholar
  19. Freeman G (1996) The role of localized cell surface-associated glycoproteins during fertilization in the hydrozoan Aequorea. Dev Biol 179(1):17–26CrossRefPubMedGoogle Scholar
  20. Freeman G (2005) The effect of larval age on developmental changes in the polyp prepattern of a hydrozoan planula. Zoology 108(1):55–73CrossRefPubMedGoogle Scholar
  21. Freeman G, Miller RL (1982) Hydrozoan eggs can only be fertilized at the site of polar body formation. Dev Biol 94(1):142–152CrossRefPubMedGoogle Scholar
  22. Freeman G, Ridgway EB (1988) The role of cAMP in oocyte maturation and the role of the germinal vesicle contents in mediating maturation and subsequent developmental events in hydrozoans. Roux Arch Dev Biol 197(4):197–211CrossRefPubMedGoogle Scholar
  23. Freeman G, Ridgway EB (1990) Cellular and intracellular pathways mediating the metamorphic stimulus in hydrozoan planulae. Roux Arch Dev Biol 199(2):63–79CrossRefPubMedGoogle Scholar
  24. Freeman G, Ridgway EB (1993) The role of intracellular calcium and pH during fertilization and egg activation in the hydrozoan Phialidium. Dev Biol 156(1):176–190CrossRefPubMedGoogle Scholar
  25. Fujisawa T (2008) Hydra peptide project 1993–2007. Develop Growth Differ 50(Suppl 1):S257–S268CrossRefGoogle Scholar
  26. Guo H, Rischer M, Sperfeld M, Weigel C, Menzel KD, Clardy J, Beemelmanns C (2017) Natural products and morphogenic activity of γ-Proteobacteria associated with the marine hydroid polyp Hydractinia echinata. Bioorg Med Chem 25(22):6088–6097CrossRefGoogle Scholar
  27. Hassel M, Leitz T, Müller WA (1996) Signals and signal-transduction systems in the control of development in Hydra and Hydractinia. Int J Dev Biol 40(1):323–330PubMedGoogle Scholar
  28. Hirai E, Kakinuma Y (1957) Developmental cycle of Cladonema radiatum var. mayeri Perkins reared in the laboratory. Bull Mar Biol Stn Asamushi Tohoku Univ 8:49–54Google Scholar
  29. Hirai E, Kakinuma Y (1971) On symbiotic relations between differentiation of a hydrozoan Cytaeis uchidae with a gastropod Niotha livescens. Bull Mar Biol Stn Asamushi Tohoku Univ 14:65–77Google Scholar
  30. Hirai E, Kakinuma Y (1973) Differentiation and symbiosis in two hydrozoans. Publications Seto Mar Biol Lab 20:257–273CrossRefGoogle Scholar
  31. Houliston E, Momose T, Manuel M (2010) Clytia hemisphaerica: a jellyfish cousin joins the laboratory. Trends Genet 26(4):159–167CrossRefPubMedGoogle Scholar
  32. Ikegami S, Honji N, Yoshida M (1978) Light-controlled production of spawning-inducing substance in jellyfish ovary. Nature 272(5654):611–612CrossRefGoogle Scholar
  33. Inoue C, Kakinuma Y (1992) Symbiosis between Cytaeis sp (Hydrozoa) and Niotha livescens (Gastropoda) starts during their larval stage. Zool Sci 9(4):757–764Google Scholar
  34. Kakinuma Y (1962) On some factors for the differentiations of Cladonema uchidai and of Aurelia aurita. Bull Mar Biol Stn Asamushi Tohoku Univ 11:81–85Google Scholar
  35. Kakinuma Y (1969) On the differentiation of the isolated medusa bud of the hydrozoans, Cladonema uchidai and Cladonema sp. Bull Mar Biol Stn Asamushi Tohoku Univ 13:169–172Google Scholar
  36. Kakinuma Y (1988) Kochodobutsu Yushitsudobutsu. In: Ishikawa M, Numkunai T (eds) Kaisan musekitsui dobutsu no hassei jikken. Baifukan, Tokyo, pp 22–51. (in Japanese)Google Scholar
  37. Katsukura Y, David CN, Grimmelikhuijzen CJ, Sugiyama T (2003) Inhibition of metamorphosis by RFamide neuropeptides in planula larvae of Hydractinia echinata. Dev Genes Evol 213(12):579–586CrossRefPubMedGoogle Scholar
  38. Kondoh E, Tachibana K, Deguchi R (2006) Intracellular Ca2+ increase induces post-fertilization events via MAP kinase dephosphorylation in eggs of the hydrozoan jellyfish Cladonema pacificum. Dev Biol 293(1):228–241CrossRefPubMedGoogle Scholar
  39. Leclère L, Copley RR, Momose T, Houliston E (2016) Hydrozoan insights in animal development and evolution. Curr Opin Genet Dev 39:157–167CrossRefGoogle Scholar
  40. Martinez DE, Bridge D (2012) Hydra, the everlasting embryo, confronts aging. Int J Dev Biol 56(6–8):479–487CrossRefPubMedGoogle Scholar
  41. Migotto AE (1996) Benthic shallow-water hydroids (Cnidaria, Hydrozoa) of the coast of São Sebastião, Brazil, including a checklist of Brazilian hydroids. Zool Verh Leiden 306:1–125Google Scholar
  42. Miller RL (1979) Sperm chemotaxis in the hydromedusae I. Species-specificity and sperm behavior. Mar Biol 53(2):99–113CrossRefGoogle Scholar
  43. Miller RL (1985) Sperm chemo-orientation in the metazoa. In: Metz CB Jr, Monroy A (eds) Biology of fertilization, vol 2. Academic, New York, pp 275–337CrossRefGoogle Scholar
  44. Momose T, Houliston E (2007) Two oppositely localised frizzled RNAs as axis determinants in a cnidarian embryo. PLoS Biol 5(4):e70. CrossRefPubMedPubMedCentralGoogle Scholar
  45. Müller WA (1985) Tumor-promoting phorbol esters induce metamorphosis and multiple head formation in the hydroid Hydractinia. Differentiation 29(3):216–222CrossRefGoogle Scholar
  46. Müller WA, Leitz T (2002) Metamorphosis in the Cnidaria. Can J Zool 80(10):1755–1771CrossRefGoogle Scholar
  47. Namikawa H (1991) A new species of the genus Stylactaria (Cnidaria, Hydrozoa) from Hokkaido, Japan (systematics and taxonomy). Zool Sci 8(4):805–812Google Scholar
  48. Namikawa H (2005) Heteromorphic polyps discovered in Cytaeis uchidae Rees, 1962 (Hydrozoa; Cytaeidae) from Japan. Bull Natn Sci Mus Ser A 31:1–6Google Scholar
  49. Nishimiya-Fujisawa C, Kobayashi S (2012) Germline stem cells and sex determination in Hydra. Int J Dev Biol 56(6–8):499–508CrossRefPubMedGoogle Scholar
  50. Oyama K, Zeeb V, Kawamura Y, Arai T, Gotoh M, Itoh H, Itabashi T, Suzuki M, Ishiwata S (2015) Triggering of high-speed neurite outgrowth using an optical microheater. Sci Rep 5:16611. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Park HD, Sharpless NE, Ortmeyer AB (1965) Growth and differentiation in Hydra. I. The effect of temperature on sexual differentiation in Hydra littoralis. J Exp Zool 160(3):247–254CrossRefPubMedGoogle Scholar
  52. Pen I, Uller T, Feldmeyer B, Harts A, While GM, Wapstra E (2010) Climate-driven population divergence in sex-determining systems. Nature 468(7322):436–438CrossRefPubMedGoogle Scholar
  53. Philippe H, Derelle R, Lopez P, Pick K, Borchiellini C, Boury-Esnault N, Vacelet J, Renard E, Houliston E, Quéinnec E, Da Silva C, Wincker P, Le Guyader H, Leys S, Jackson DJ, Schreiber F, Erpenbeck D, Morgenstern B, Wörheide G, Manuel M (2009) Phylogenomics revives traditional views on deep animal relationships. Curr Biol 19:706–712CrossRefPubMedGoogle Scholar
  54. Quiroga Artigas G, Lapébie P, Leclère L, Takeda N, Deguchi R, Jékely G, Momose T, Houliston E (2018) A gonad-expressed opsin mediates lightinduced spawning in the jellyfish Clytia. eLife 7:e29555.
  55. Shimomura O (2008) Discovery of green fluorscent protein, GFP. Nobel Lecture.
  56. Takeda N, Kyozuka K, Deguchi R (2006) Increase in intracellular cAMP is a prerequisite signal for initiation of physiological oocyte meiotic maturation in the hydrozoan Cytaeis uchidae. Dev Biol 298(1):248–258CrossRefPubMedGoogle Scholar
  57. Takeda N, Nakajima Y, Koizumi O, Fujisawa T, Takahashi T, Matsumoto M, Deguchi R (2013) Neuropeptides trigger oocyte maturation and subsequent spawning in the hydrozoan jellyfish Cytaeis uchidae. Mol Reprod Dev 80(3):223–232CrossRefPubMedGoogle Scholar
  58. Takeda N, Kon Y, Quiroga Artigas G, Lapébie P, Barreau C, Koizumi O, Kishimoto T, Tachibana K, Houliston E, Deguchi R (2018) Identification of jellyfish neuropeptides that act directly as oocyte maturation inducing hormones. Development 145(2):dev156786.
  59. Walther M, Ulrich R, Kroiher M, Berking S (1996) Metamorphosis and pattern formation in Hydractinia echinata, a colonial hydroid. Int J Dev Biol 40(1):313–322PubMedGoogle Scholar
  60. Yamashita M (1988) A fine structural study of the fertilization process of the jellyfish Cladonema uchidai. Develop Growth Differ 30(1):81–91CrossRefGoogle Scholar
  61. Yatsu R, Miyagawa S, Kohno S, Saito S, Lowers RH, Ogino Y, Fukuta N, Katsu Y, Ohta Y, Tominaga M, Guillette LJ Jr, Iguchi T (2015) TRPV4 associates environmental temperature and sex determination in the American alligator. Sci Rep 5:18581. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Asamushi Research Center for Marine BiologyTohoku UniversityAomoriJapan
  2. 2.Department of BiologyMiyagi University of EducationSendaiJapan
  3. 3.Faculty of Science and EngineeringWaseda UniversityTokyoJapan

Personalised recommendations