Regulation of Sperm-Egg Fusion at the Plasma Membrane

  • Kenji MiyadoEmail author
  • Kenji Yamatoya
  • Woojin Kang
  • Natsuko Kawano
Part of the Diversity and Commonality in Animals book series (DCA)


In fertilization, two types of gametes—sperm and egg—unite in a stepwise approach to create a single fertilized cell, which is capable of naturally developing into a new individual. Notably, membrane fusion occurring intercellularly between a sperm and an egg is essential for fertilization. In mammals, two integral membrane proteins, Izumo1 on the sperm plasma membrane and Cd9 on the egg plasma membrane, regulate sperm-egg fusion, and a new study has found a novel Izumo1 receptor, Juno, on the egg plasma membrane. Besides germ cells, Cd9 is expressed in a wide variety of cells, implying a close relationship between general fusion-related phenomena and sperm-egg fusion in particular. In invertebrate animals and in plants, Gcs1 plays an essential role in sperm-egg fusion. Considerable efforts are being devoted to understanding the molecular basis of cell-cell fusion; however, the exact mechanism(s) of the fusion process remain unclear. In this chapter we highlight the functions of some major molecules involved in the sperm-egg fusion and also discuss a possible molecular mechanism underlying this fusion.


Membrane fusion Cd9 Izumo1 Juno Gcs1 Microvilli Tetraspanin Microexosome 



This review was supported by a grant from The Ministry of Health, Labor and Welfare, and a grant-in-aid for Scientific Research, The Ministry of Education, Culture, Sports, and Technology of Japan. We have no conflict of interest.


  1. Akutsu H, Miura T, Machida M, Birumachi J, Hamada A, Yamada M, Sullivan S, Miyado K, Umezawa A (2009) Maintenance of pluripotency and self-renewal ability of mouse embryonic stem cells in the absence of tetraspanin CD9. Differentiation 78:137–142PubMedCrossRefGoogle Scholar
  2. Alfieri JA, Martin AD, Takeda J, Kondoh G, Myles DG, Primakoff P (2003) Infertility in female mice with an oocyte-specific knockout of GPI-anchored proteins. J Cell Sci 116:2149–2155PubMedCrossRefGoogle Scholar
  3. Almeida EA, Huovila AP, Sutherland AE, Stephens LE, Calarco PG, Shaw LM, Mercurio AM, Sonnenberg A, Primakoff P, Myles DG et al (1995) Mouse egg integrin alpha 6 beta 1 functions as a sperm receptor. Cell 81:1095–1104PubMedCrossRefGoogle Scholar
  4. Baker MA, Hetherington L, Weinberg A, Naumovski N, Velkov T, Pelzing M, Dolman S, Condina MR, Aitken RJ (2012) Analysis of phosphopeptide changes as spermatozoa acquire functional competence in the epididymis demonstrates changes in the post-translational modification of Izumo1. J Proteome Res 11:5252–5264PubMedCrossRefGoogle Scholar
  5. Barraud-Lange V, Naud-Barriant N, Bomsel M, Wolf JP, Ziyyat A (2007) Transfer of oocyte membrane fragments to fertilizing spermatozoa. FASEB J 21:3446–3449PubMedCrossRefGoogle Scholar
  6. Bianchi E, Doe B, Goulding D, Wright GJ (2014) Juno is the egg Izumo receptor and is essential for mammalian fertilization. Nature 508:483–487PubMedPubMedCentralCrossRefGoogle Scholar
  7. Blobel CP, Wolfsberg TG, Turck CW, Myles DG, Primakoff P, White JM (1992) A potential fusion peptide and an integrin ligand domain in a protein active in sperm-egg fusion. Nature 356:248–252PubMedCrossRefGoogle Scholar
  8. Bronson RA, Fusi FM, Calzi F, Doldi N, Ferrari A (1999) Evidence that a functional fertilin-like ADAM plays a role in human sperm-oolemmal interactions. Mol Hum Reprod 5:433–440PubMedCrossRefGoogle Scholar
  9. Busso D, Goldweic NM, Hayashi M, Kasahara M, Cuasnicu PS (2007) Evidence for the involvement of testicular protein CRISP2 in mouse sperm-egg fusion. Biol Reprod 76:701–708PubMedCrossRefGoogle Scholar
  10. Chen H, Sampson NS (1999) Mediation of sperm-egg fusion: evidence that mouse egg alpha6beta1 integrin is the receptor for sperm fertilinbeta. Chem Biol 6:1–10PubMedCrossRefGoogle Scholar
  11. Chen MS, Tung KS, Coonrod SA, Takahashi Y, Bigler D, Chang A, Yamashita Y, Kincade PW, Herr JC, White JM (1999) Role of the integrin-associated protein CD9 in binding between sperm ADAM 2 and the egg integrin alpha6beta1: implications for murine fertilization. Proc Natl Acad Sci U S A 96:11830–11835PubMedPubMedCentralCrossRefGoogle Scholar
  12. Chiu WH, Chandler J, Cnops G, Van Lijsebettens M, Werr W (2007) Mutations in the TORNADO2 gene affect cellular decisions in the peripheral zone of the shoot apical meristem of Arabidopsis thaliana. Plant Mol Biol 63:731–744PubMedCrossRefGoogle Scholar
  13. Cho C, Bunch DO, Faure JE, Goulding EH, Eddy EM, Primakoff P, Myles DG (1998) Fertilization defects in sperm from mice lacking fertilin beta. Science 281:1857–1859PubMedCrossRefGoogle Scholar
  14. Cho C, Ge H, Branciforte D, Primakoff P, Myles DG (2000) Analysis of mouse fertilin in wild-type and fertilin beta(-/-) sperm: evidence for C-terminal modification, alpha/beta dimerization, and lack of essential role of fertilin alpha in sperm-egg fusion. Dev Biol 222:289–295PubMedCrossRefGoogle Scholar
  15. Clergeot PH, Gourgues M, Cots J, Laurans F, Latorse MP, Pepin R, Tharreau D, Notteghem JL, Lebrun MH (2001) PLS1, a gene encoding a tetraspanin-like protein, is required for penetration of rice leaf by the fungal pathogen Magnaporthe grisea. Proc Natl Acad Sci U S A 98:6963–6968PubMedPubMedCentralCrossRefGoogle Scholar
  16. Couzin J (2005) Cell biology: the ins and outs of exosomes. Science 308:1862–1863PubMedCrossRefGoogle Scholar
  17. Crosnier C, Bustamante LY, Bartholdson SJ, Bei AK, Theron M, Uchikawa M, Mboup S, Ndir O, Kwiatkowski DP, Duraisingh MT et al (2011) Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum. Nature 480:534–537PubMedPubMedCentralCrossRefGoogle Scholar
  18. Da Ros VG, Maldera JA, Willis WD, Cohen DJ, Goulding EH, Gelman DM, Rubinstein M, Eddy EM, Cuasnicu PS (2008) Impaired sperm fertilizing ability in mice lacking Cysteine-RIch Secretory Protein 1 (CRISP1). Dev Biol 320:12–18PubMedPubMedCentralCrossRefGoogle Scholar
  19. Da Ros VG, Munoz MW, Battistone MA, Brukman NG, Carvajal G, Curci L, Gomez-ElIas MD, Cohen DB, Cuasnicu PS (2015) From the epididymis to the egg: participation of CRISP proteins in mammalian fertilization. Asian J Androl 17(5):711–715PubMedPubMedCentralGoogle Scholar
  20. Dandekar P, Aggeler J, Talbot P (1992) Structure, distribution and composition of the extracellular matrix of human oocytes and cumulus masses. Hum Reprod 7:391–398PubMedCrossRefGoogle Scholar
  21. De Vries WN, Evsikov AV, Haac BE, Fancher KS, Holbrook AE, Kemler R, Solter D, Knowles BB (2004) Maternal beta-catenin and E-cadherin in mouse development. Development 131:4435–4445PubMedCrossRefGoogle Scholar
  22. Denzer K, Kleijmeer MJ, Heijnen HF, Stoorvogel W, Geuze HJ (2000) Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. J Cell Sci 113(Pt 19):3365–3374PubMedGoogle Scholar
  23. Ebchuqin E, Yokota N, Yamada L, Yasuoka Y, Akasaka M, Arakawa M, Deguchi R, Mori T, Sawada H (2014) Evidence for participation of GCS1 in fertilization of the starlet sea anemone Nematostella vectensis: implication of a common mechanism of sperm-egg fusion in plants and animals. Biochem Biophys Res Commun 451:522–528CrossRefPubMedGoogle Scholar
  24. Elices MJ, Osborn L, Takada Y, Crouse C, Luhowskyj S, Hemler ME, Lobb RR (1990) VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site. Cell 60:577–584PubMedCrossRefGoogle Scholar
  25. Evans JP (2001) Fertilin beta and other ADAMs as integrin ligands: insights into cell adhesion and fertilization. BioEssays 23:628–639PubMedCrossRefGoogle Scholar
  26. Evans JP, Schultz RM, Kopf GS (1997) Characterization of the binding of recombinant mouse sperm fertilin alpha subunit to mouse eggs: evidence for function as a cell adhesion molecule in sperm-egg binding. Dev Biol 187:94–106PubMedCrossRefGoogle Scholar
  27. Fujihara Y, Murakami M, Inoue N, Satouh Y, Kaseda K, Ikawa M, Okabe M (2010) Sperm equatorial segment protein 1, SPESP1, is required for fully fertile sperm in mouse. J Cell Sci 123:1531–1536PubMedCrossRefGoogle Scholar
  28. Fujihara Y, Okabe M, Ikawa M (2014) GPI-anchored protein complex, LY6K/TEX101, is required for sperm migration into the oviduct and male fertility in mice. Biol Reprod 90(3):60PubMedCrossRefGoogle Scholar
  29. Garcia E, Pion M, Pelchen-Matthews A, Collinson L, Arrighi JF, Blot G, Leuba F, Escola JM, Demaurex N, Marsh M et al (2005) HIV-1 trafficking to the dendritic cell-T-cell infectious synapse uses a pathway of tetraspanin sorting to the immunological synapse. Traffic 6:488–501PubMedCrossRefGoogle Scholar
  30. Grayson P, Civetta A (2012) Positive selection and the evolution of izumo genes in mammals. Int J Evol Biol 2012:1–7CrossRefGoogle Scholar
  31. Gumbiner BM (1996) Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84:345–357PubMedCrossRefGoogle Scholar
  32. Hassuna N, Monk PN, Moseley GW, Partridge LJ (2009) Strategies for targeting tetraspanin proteins: potential therapeutic applications in microbial infections. BioDrugs 23:341–359PubMedCrossRefGoogle Scholar
  33. He ZY, Brakebusch C, Fassler R, Kreidberg JA, Primakoff P, Myles DG (2003) None of the integrins known to be present on the mouse egg or to be ADAM receptors are essential for sperm-egg binding and fusion. Dev Biol 254:226–237PubMedCrossRefGoogle Scholar
  34. Hemler ME (2003) Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu Rev Cell Dev Biol 19:397–422. ReviewPubMedCrossRefGoogle Scholar
  35. Hemler ME (2008) Targeting of tetraspanin proteins – potential benefits and strategies. Nat Rev Drug Discov 7:747–758PubMedPubMedCentralCrossRefGoogle Scholar
  36. Hirai M, Arai M, Mori T, Miyagishima SY, Kawai S, Kita K, Kuroiwa T, Terenius O, Matsuoka H (2008) Male fertility of malaria parasites is determined by GCS1, a plant-type reproduction factor. Curr Biol 18:607–613PubMedPubMedCentralCrossRefGoogle Scholar
  37. Huang S, Yuan S, Dong M, Su J, Yu C, Shen Y, Xie X, Yu Y, Yu X, Chen S et al (2005) The phylogenetic analysis of tetraspanins projects the evolution of cell-cell interactions from unicellular to multicellular organisms. Genomics 86:674–684PubMedCrossRefGoogle Scholar
  38. Huelsken J, Vogel R, Erdmann B, Cotsarelis G, Birchmeier W (2001) Beta-catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 105:533–545PubMedPubMedCentralCrossRefGoogle Scholar
  39. Hui SW, Stewart TP, Boni LT, Yeagle PL (1981) Membrane fusion through point defects in bilayers. Science 212:921–923PubMedCrossRefGoogle Scholar
  40. Igakura T, Kadomatsu K, Kaname T, Muramatsu H, Fan QW, Miyauchi T, Toyama Y, Kuno N, Yuasa S, Takahashi M et al (1998) A null mutation in basigin, an immunoglobulin superfamily member, indicates its important roles in peri-implantation development and spermatogenesis. Dev Biol 194:152–165PubMedCrossRefGoogle Scholar
  41. Ikawa M, Wada I, Kominami K, Watanabe D, Toshimori K, Nishimune Y, Okabe M (1997) The putative chaperone calmegin is required for sperm fertility. Nature 387:607–611PubMedCrossRefGoogle Scholar
  42. Ikawa M, Inoue N, Benham AM, Okabe M (2010) Fertilization: a sperm’s journey to and interaction with the oocyte. J Clin Invest 120:984–994PubMedPubMedCentralCrossRefGoogle Scholar
  43. Ikawa M, Tokuhiro K, Yamaguchi R, Benham AM, Tamura T, Wada I, Satouh Y, Inoue N, Okabe M (2011) Calsperin is a testis-specific chaperone required for sperm fertility. J Biol Chem 286:5639–5646PubMedCrossRefGoogle Scholar
  44. Inoue N, Ikawa M, Isotani A, Okabe M (2005) The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature 434:234–238CrossRefPubMedGoogle Scholar
  45. Inoue N, Ikawa M, Okabe M (2008) Putative sperm fusion protein IZUMO and the role of N-glycosylation. Biochem Biophys Res Commun 377:910–914PubMedCrossRefGoogle Scholar
  46. Inoue N, Kasahara T, Ikawa M, Okabe M (2010) Identification and disruption of sperm-specific angiotensin converting enzyme-3 (ACE3) in mouse. PLoS One 5:e10301PubMedPubMedCentralCrossRefGoogle Scholar
  47. Inoue N, Nishikawa T, Ikawa M, Okabe M (2012) Tetraspanin-interacting protein IGSF8 is dispensable for mouse fertility. Fertil Steril 98:465–470PubMedCrossRefGoogle Scholar
  48. Inoue N, Hamada D, Kamikubo H, Hirata K, Kataoka M, Yamamoto M, Ikawa M, Okabe M, Hagihara Y (2013) Molecular dissection of IZUMO1, a sperm protein essential for sperm-egg fusion. Development 140(15):3221–3229CrossRefPubMedGoogle Scholar
  49. Inoue N, Hagihara Y, Wright D, Suzuki T, Wada I (2015) Oocyte-triggered dimerization of sperm IZUMO1 promotes sperm-egg fusion in mice. Nat Commun 6:8858PubMedPubMedCentralCrossRefGoogle Scholar
  50. Kaji K, Oda S, Shikano T, Ohnuki T, Uematsu Y, Sakagami J, Tada N, Miyazaki S, Kudo A (2000) The gamete fusion process is defective in eggs of Cd9-deficient mice. Nat Genet 24:279–282CrossRefPubMedGoogle Scholar
  51. Kawai-Toyooka H, Mori T, Hamaji T, Suzuki M, Olson BJ, Uemura T, Ueda T, Nakano A, Toyoda A, Fujiyama A et al (2014) Sex-specific posttranslational regulation of the gamete fusogen GCS1 in the isogamous volvocine alga Gonium pectorale. Eukaryot Cell 13:648–656PubMedPubMedCentralCrossRefGoogle Scholar
  52. Kim E, Yamashita M, Nakanishi T, Park KE, Kimura M, Kashiwabara S, Baba T (2006) Mouse sperm lacking ADAM1b/ADAM2 fertilin can fuse with the egg plasma membrane and effect fertilization. J Biol Chem 281:5634–5639PubMedCrossRefGoogle Scholar
  53. Kondoh G, Tojo H, Nakatani Y, Komazawa N, Murata C, Yamagata K, Maeda Y, Kinoshita T, Okabe M, Taguchi R et al (2005) Angiotensin-converting enzyme is a GPI-anchored protein releasing factor crucial for fertilization. Nat Med 11:160–166PubMedCrossRefGoogle Scholar
  54. Kopczynski CC, Davis GW, Goodman CS (1996) A neural tetraspanin, encoded by late bloomer, that facilitates synapse formation. Science 271:1867–1870PubMedCrossRefGoogle Scholar
  55. Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T (2010) Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 285:17442–17452PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kozlovsky Y, Chernomordik LV, Kozlov MM (2002) Lipid intermediates in membrane fusion: formation, structure, and decay of hemifusion diaphragm. Biophys J 83:2634–2651PubMedPubMedCentralCrossRefGoogle Scholar
  57. Lambou K, Tharreau D, Kohler A, Sirven C, Marguerettaz M, Barbisan C, Sexton AC, Kellner EM, Martin F, Howlett BJ et al (2008) Fungi have three tetraspanin families with distinct functions. BMC Genomics 9:63PubMedPubMedCentralCrossRefGoogle Scholar
  58. Le Naour F, Rubinstein E, Jasmin C, Prenant M, Boucheix C (2000) Severely reduced female fertility in CD9-deficient mice. Science 287:319–321CrossRefPubMedGoogle Scholar
  59. Marcello MR, Jia W, Leary JA, Moore KL, Evans JP (2011) Lack of tyrosylprotein sulfotransferase-2 activity results in altered sperm-egg interactions and loss of ADAM3 and ADAM6 in epididymal sperm. J Biol Chem 286:13060–13070PubMedPubMedCentralCrossRefGoogle Scholar
  60. Marin-Briggiler CI, Lapyckyj L, Gonzalez Echeverria MF, Rawe VY, Alvarez Sedo C, Vazquez-Levin MH (2010) Neural cadherin is expressed in human gametes and participates in sperm-oocyte interaction events. Int J Androl 33:e228–e239PubMedCrossRefGoogle Scholar
  61. McLaughlin EA, Frayne J, Bloomerg G, Hall L (2001) Do fertilin beta and cyritestin play a major role in mammalian sperm--oolemma interactions? A critical re-evaluation of the use of peptide mimics in identifying specific oocyte recognition protiens. Mol Hum Reprod 7:313–317PubMedCrossRefGoogle Scholar
  62. Menko AS, Boettiger D (1987) Occupation of the extracellular matrix receptor, integrin, is a control point for myogenic differentiation. Cell 51:51–57PubMedCrossRefGoogle Scholar
  63. Miller BJ, Georges-Labouesse E, Primakoff P, Myles DG (2000) Normal fertilization occurs with eggs lacking the integrin alpha6beta1 and is CD9-dependent. J Cell Biol 149:1289–1296PubMedPubMedCentralCrossRefGoogle Scholar
  64. Miyado K, Yamada G, Yamada S, Hasuwa H, Nakamura Y, Ryu F, Suzuki K, Kosai K, Inoue K, Ogura A et al (2000) Requirement of CD9 on the egg plasma membrane for fertilization. Science 287:321–324CrossRefPubMedGoogle Scholar
  65. Miyado K, Yoshida K, Yamagata K, Sakakibara K, Okabe M, Wang X, Miyamoto K, Akutsu H, Kondo T, Takahashi Y et al (2008) The fusing ability of sperm is bestowed by CD9-containing vesicles released from eggs in mice. Proc Natl Acad Sci U S A 105:12921–12926PubMedPubMedCentralCrossRefGoogle Scholar
  66. Miyado K, Kang W, Yamatoya K, Hanai M, Nakamura A, Mori T, Miyado M, Kawano N (2017) Exosomes versus microexosomes: shared components but distinct functions. J Plant Res 130(3):479–483PubMedCrossRefGoogle Scholar
  67. Mori T, Kuroiwa H, Higashiyama T, Kuroiwa T (2006) GENERATIVE CELL SPECIFIC 1 is essential for angiosperm fertilization. Nat Cell Biol 8:64–71CrossRefPubMedGoogle Scholar
  68. Mori T, Hirai M, Kuroiwa T, Miyagishima SY (2010) The functional domain of GCS1-based gamete fusion resides in the amino terminus in plant and parasite species. PLoS One 5:e15957PubMedPubMedCentralCrossRefGoogle Scholar
  69. Moribe H, Yochem J, Yamada H, Tabuse Y, Fujimoto T, Mekada E (2004) Tetraspanin protein (TSP-15) is required for epidermal integrity in Caenorhabditis elegans. J Cell Sci 117:5209–5220PubMedCrossRefGoogle Scholar
  70. Moribe H, Konakawa R, Koga D, Ushiki T, Nakamura K, Mekada E (2012) Tetraspanin is required for generation of reactive oxygen species by the dual oxidase system in Caenorhabditis elegans. PLoS Genet 8:e1002957PubMedPubMedCentralCrossRefGoogle Scholar
  71. Myles DG, Kimmel LH, Blobel CP, White JM, Primakoff P (1994) Identification of a binding site in the disintegrin domain of fertilin required for sperm-egg fusion. Proc Natl Acad Sci U S A 91:4195–4198PubMedPubMedCentralCrossRefGoogle Scholar
  72. Nagafuchi A, Takeichi M (1988) Cell binding function of E-cadherin is regulated by the cytoplasmic domain. EMBO J 7:3679–3684PubMedPubMedCentralCrossRefGoogle Scholar
  73. Nagafuchi A, Takeichi M, Tsukita S (1991) The 102 kd cadherin-associated protein: similarity to vinculin and posttranscriptional regulation of expression. Cell 65:849–857PubMedCrossRefGoogle Scholar
  74. Nishimura H, Cho C, Branciforte DR, Myles DG, Primakoff P (2001) Analysis of loss of adhesive function in sperm lacking cyritestin or fertilin beta. Dev Biol 233:204–213PubMedCrossRefGoogle Scholar
  75. Nishimura H, Gupta S, Myles DG, Primakoff P (2011) Characterization of mouse sperm TMEM190, a small transmembrane protein with the trefoil domain: evidence for co-localization with IZUMO1 and complex formation with other sperm proteins. Reproduction 141:437–451PubMedCrossRefGoogle Scholar
  76. Ohgimoto S, Tabata N, Suga S, Nishio M, Ohta H, Tsurudome M, Komada H, Kawano M, Watanabe N, Ito Y (1995) Molecular characterization of fusion regulatory protein-1 (FRP-1) that induces multinucleated giant cell formation of monocytes and HIV gp160-mediated cell fusion. FRP-1 and 4F2/CD98 are identical molecules. J Immunol 155:3585–3592PubMedGoogle Scholar
  77. Ohnami N, Nakamura A, Miyado M, Sato M, Kawano N, Yoshida K, Harada Y, Takezawa Y, Kanai S, Ono C et al (2012) CD81 and CD9 work independently as extracellular components upon fusion of sperm and oocyte. Biol Open 1:640–647PubMedPubMedCentralCrossRefGoogle Scholar
  78. Okabe M, Cummins JM (2007) Mechanisms of sperm-egg interactions emerging from gene-manipulated animals. Cell Mol Life Sci 64:1945–1958PubMedCrossRefGoogle Scholar
  79. Okabe M, Yagasaki M, Oda H, Matzno S, Kohama Y, Mimura T (1988) Effect of a monoclonal anti-mouse sperm antibody (OBF13) on the interaction of mouse sperm with zona-free mouse and hamster eggs. J Reprod Immunol 13:211–219PubMedCrossRefGoogle Scholar
  80. Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383PubMedPubMedCentralCrossRefGoogle Scholar
  81. Robbins PD, Morelli AE (2014) Regulation of immune responses by extracellular vesicles. Nat Rev Immunol 14:195–208PubMedPubMedCentralCrossRefGoogle Scholar
  82. Rosen GD, Sanes JR, LaChance R, Cunningham JM, Roman J, Dean DC (1992) Roles for the integrin VLA-4 and its counter receptor VCAM-1 in myogenesis. Cell 69:1107–1119PubMedCrossRefGoogle Scholar
  83. Rubinstein E, Ziyyat A, Prenant M, Wrobel E, Wolf JP, Levy S, Le Naour F, Boucheix C (2006) Reduced fertility of female mice lacking CD81. Dev Biol 290:351–358PubMedCrossRefGoogle Scholar
  84. Runge KE, Evans JE, He ZY, Gupta S, McDonald KL, Stahlberg H, Primakoff P, Myles DG (2007) Oocyte CD9 is enriched on the microvillar membrane and required for normal microvillar shape and distribution. Dev Biol 304:317–325PubMedCrossRefGoogle Scholar
  85. Satouh Y, Inoue N, Ikawa M, Okabe M (2012) Visualization of the moment of mouse sperm-egg fusion and dynamic localization of IZUMO1. J Cell Sci 125:4985–4990PubMedPubMedCentralCrossRefGoogle Scholar
  86. Saxena DK, Toshimori K (2004) Molecular modifications of MC31/CE9, a sperm surface molecule, during sperm capacitation and the acrosome reaction in the rat: is MC31/CE9 required for fertilization? Biol Reprod 70:993–1000PubMedCrossRefGoogle Scholar
  87. Saxena DK, Tanii I, Yoshinaga K, Toshimori K (1999) Role of intra-acrosomal antigenic molecules acrin 1 (MN7) and acrin 2 (MC41) in penetration of the zona pellucida in fertilization in mice. J Reprod Fertil 117:17–25PubMedCrossRefGoogle Scholar
  88. Schwander M, Leu M, Stumm M, Dorchies OM, Ruegg UT, Schittny J, Muller U (2003) Beta1 integrins regulate myoblast fusion and sarcomere assembly. Dev Cell 4:673–685PubMedCrossRefGoogle Scholar
  89. Shiino T (2012) Phylodynamic analysis of a viral infection network. Front Microbiol 3:278PubMedPubMedCentralCrossRefGoogle Scholar
  90. Silvie O, Rubinstein E, Franetich JF, Prenant M, Belnoue E, Renia L, Hannoun L, Eling W, Levy S, Boucheix C et al (2003) Hepatocyte CD81 is required for Plasmodium falciparum and Plasmodium yoelii sporozoite infectivity. Nat Med 9:93–96PubMedCrossRefGoogle Scholar
  91. Simons M, Raposo G (2009) Exosomes–vesicular carriers for intercellular communication. Curr Opin Cell Biol 21:575–581PubMedCrossRefGoogle Scholar
  92. Sosnik J, Miranda PV, Spiridonov NA, Yoon SY, Fissore RA, Johnson GR, Visconti PE (2009) Tssk6 is required for Izumo relocalization and gamete fusion in the mouse. J Cell Sci 122:2741–2749PubMedPubMedCentralCrossRefGoogle Scholar
  93. Spiridonov NA, Wong L, Zerfas PM, Starost MF, Pack SD, Paweletz CP, Johnson GR (2005) Identification and characterization of SSTK, a serine/threonine protein kinase essential for male fertility. Mol Cell Biol 25:4250–4261PubMedPubMedCentralCrossRefGoogle Scholar
  94. Takahashi Y, Bigler D, Ito Y, White JM (2001) Sequence-specific interaction between the disintegrin domain of mouse ADAM 3 and murine eggs: role of beta1 integrin-associated proteins CD9, CD81, and CD98. Mol Biol Cell 12:809–820PubMedPubMedCentralCrossRefGoogle Scholar
  95. Takezawa Y, Yoshida K, Miyado K, Sato M, Nakamura A, Kawano N, Sakakibara K, Kondo T, Harada Y, Ohnami N et al (2011) Beta-catenin is a molecular switch that regulates transition of cell-cell adhesion to fusion. Sci Rep 1:68PubMedPubMedCentralCrossRefGoogle Scholar
  96. Talbot P, DiCarlantonio G (1984) Ultrastructure of opossum oocyte investing coats and their sensitivity to trypsin and hyaluronidase. Dev Biol 103:159–167PubMedCrossRefGoogle Scholar
  97. Tanigawa M, Miyamoto K, Kobayashi S, Sato M, Akutsu H, Okabe M, Mekada E, Sakakibara K, Miyado M, Umezawa A et al (2008) Possible involvement of CD81 in acrosome reaction of sperm in mice. Mol Reprod Dev 75:150–155PubMedCrossRefGoogle Scholar
  98. Todres E, Nardi JB, Robertson HM (2000) The tetraspanin superfamily in insects. Insect Mol Biol 9:581–590PubMedCrossRefGoogle Scholar
  99. Tokuhiro K, Ikawa M, Benham AM, Okabe M (2012) Protein disulfide isomerase homolog PDILT is required for quality control of sperm membrane protein ADAM3 and male fertility [corrected]. Proc Natl Acad Sci U S A 109:3850–3855PubMedPubMedCentralCrossRefGoogle Scholar
  100. Toshimori K, Saxena DK, Tanii I, Yoshinaga K (1998) An MN9 antigenic molecule, equatorin, is required for successful sperm-oocyte fusion in mice. Biol Reprod 59:22–29PubMedCrossRefGoogle Scholar
  101. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659PubMedCrossRefGoogle Scholar
  102. Valenta T, Hausmann G, Basler K (2012) The many faces and functions of beta-catenin. EMBO J 31:2714–2736PubMedPubMedCentralCrossRefGoogle Scholar
  103. Veneault-Fourrey C, Parisot D, Gourgues M, Lauge R, Lebrun MH, Langin T (2005) The tetraspanin gene ClPLS1 is essential for appressorium-mediated penetration of the fungal pathogen Colletotrichum lindemuthianum. Fungal Genet Biol 42:306–318PubMedCrossRefGoogle Scholar
  104. Vjugina U, Zhu X, Oh E, Bracero NJ, Evans JP (2009) Reduction of mouse egg surface integrin alpha9 subunit (ITGA9) reduces the egg’s ability to support sperm-egg binding and fusion. Biol Reprod 80:833–841PubMedPubMedCentralCrossRefGoogle Scholar
  105. Waters SI, White JM (1997) Biochemical and molecular characterization of bovine fertilin alpha and beta (ADAM 1 and ADAM 2): a candidate sperm-egg binding/fusion complex. Biol Reprod 56:1245–1254PubMedCrossRefGoogle Scholar
  106. Weskamp G, Blobel CP (1994) A family of cellular proteins related to snake venom disintegrins. Proc Natl Acad Sci U S A 91:2748–2751PubMedPubMedCentralCrossRefGoogle Scholar
  107. Wiley RD, Gummuluru S (2006) Immature dendritic cell-derived exosomes can mediate HIV-1 trans infection. Proc Natl Acad Sci U S A 103:738–743PubMedPubMedCentralCrossRefGoogle Scholar
  108. Wolfsberg TG, Bazan JF, Blobel CP, Myles DG, Primakoff P, White JM (1993) The precursor region of a protein active in sperm-egg fusion contains a metalloprotease and a disintegrin domain: structural, functional, and evolutionary implications. Proc Natl Acad Sci U S A 90:10783–10787PubMedPubMedCentralCrossRefGoogle Scholar
  109. Yamagata K, Nakanishi T, Ikawa M, Yamaguchi R, Moss SB, Okabe M (2002) Sperm from the calmegin-deficient mouse have normal abilities for binding and fusion to the egg plasma membrane. Dev Biol 250:348–357PubMedCrossRefGoogle Scholar
  110. Yamaguchi R, Fujihara Y, Ikawa M, Okabe M (2012) Mice expressing aberrant sperm-specific protein PMIS2 produce normal-looking but fertilization-incompetent spermatozoa. Mol Biol Cell 23:2671–2679PubMedPubMedCentralCrossRefGoogle Scholar
  111. Yamatoya K, Yoshida K, Ito C, Maekawa M, Yanagida M, Takamori K, Ogawa H, Araki Y, Miyado K, Toyama Y et al (2009) Equatorin: identification and characterization of the epitope of the MN9 antibody in the mouse. Biol Reprod 81:889–897PubMedCrossRefGoogle Scholar
  112. Yuan R, Primakoff P, Myles DG (1997) A role for the disintegrin domain of cyritestin, a sperm surface protein belonging to the ADAM family, in mouse sperm-egg plasma membrane adhesion and fusion. J Cell Biol 137:105–112PubMedPubMedCentralCrossRefGoogle Scholar
  113. Zhu X, Bansal NP, Evans JP (2000) Identification of key functional amino acids of the mouse fertilin beta (ADAM2) disintegrin loop for cell-cell adhesion during fertilization. J Biol Chem 275:7677–7683PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Kenji Miyado
    • 1
    Email author
  • Kenji Yamatoya
    • 1
    • 2
  • Woojin Kang
    • 3
  • Natsuko Kawano
    • 1
    • 3
  1. 1.Department of Reproductive BiologyNational Research Institute for Child Health and DevelopmentSetagaya, TokyoJapan
  2. 2.Department of Perinatal Medicine and Maternal CareNational Center for Child Health and DevelopmentSetagaya, TokyoJapan
  3. 3.Department of Life Sciences, School of AgricultureMeiji UniversityKawasakiJapan

Personalised recommendations