Skip to main content

Regulatory Mechanisms of the Germline Stem Cell Niche in Drosophila melanogaster

  • Chapter
  • First Online:
Reproductive and Developmental Strategies

Part of the book series: Diversity and Commonality in Animals ((DCA))

Abstract

Stem cells possess the unique ability to produce both self-renewing and differentiating daughter cells continuously throughout an animal’s lifespan. Understanding the mechanisms that regulate proper stem cell maintenance is a central issue in basic biology and medical science. Since the stem cell niche hypothesis arose in the late 1970s, it has been widely believed that stem cells are maintained within a specialized extracellular microenvironment known as the niche. Germline stem cells (GSCs) in the fruit fly, Drosophila melanogaster, provide an excellent model for study of the stem cell niche in vivo. The first molecular components constituting the Drosophila ovarian GSC niche were identified in 1998. Since that time, identification of niche components and our understanding of how the niche maintains stem cells have continued to progress. In this review, we introduce how the niche maintains GSCs, as well as how the niche itself is precisely formed in the tissue. In addition, we discuss recent findings showing that the state of the host organism, including nutrient status and aging, affects niche function and stem cell maintenance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akiyama T, Kamimura K, Firkus C, Takeo S, Shimmi O, Nakato H (2008) Dally regulates Dpp morphogen gradient formation by stabilizing Dpp on the cell surface. Dev Biol 313:408–419

    Article  CAS  PubMed  Google Scholar 

  • Asaoka M, Lin H (2004) Germline stem cells in the Drosophila ovary descend from pole cells in the anterior region of the embryonic gonad. Development (Cambridge, England) 131:5079–5089

    Article  CAS  Google Scholar 

  • Boyle M, Wong C, Rocha M, Jones DL (2007) Decline in self-renewal factors contributes to aging of the stem cell niche in the Drosophila testis. Cell Stem Cell 1:470–478

    Article  CAS  PubMed  Google Scholar 

  • Chen D, McKearin D (2003) Dpp signaling silences bam transcription directly to establish asymmetric divisions of germline stem cells. Curr Biol 13:1786–1791

    Article  CAS  PubMed  Google Scholar 

  • Decotto E, Spradling AC (2005) The Drosophila ovarian and testis stem cell niches: similar somatic stem cells and signals. Dev Cell 9:501–510

    Article  CAS  PubMed  Google Scholar 

  • Dinardo S, Okegbe T, Wingert L, Freilich S, Terry N (2011) lines and bowl affect the specification of cyst stem cells and niche cells in the Drosophila testis. Development (Camb Engl) 138:1687–1696

    Article  CAS  Google Scholar 

  • Drummond-Barbosa D, Spradling AC (2001) Stem cells and their progeny respond to nutritional changes during Drosophila oogenesis. Dev Biol 231:265–278

    Article  CAS  PubMed  Google Scholar 

  • Fujise M, Takeo S, Kamimura K, Matsuo T, Aigaki T, Izumi S, Nakato H (2003) Dally regulates Dpp morphogen gradient formation in the Drosophila wing. Development (Cambr Engl) 130:1515–1522

    Article  CAS  Google Scholar 

  • Guo Z, Wang Z (2009) The glypican Dally is required in the niche for the maintenance of germline stem cells and short-range BMP signaling in the Drosophila ovary. Development (Cambr Engl) 136:3627–3635

    Article  CAS  Google Scholar 

  • Hacker U, Nybakken K, Perrimon N (2005) Heparan sulphate proteoglycans: the sweet side of development. Nat Rev Mol Cell Biol 6:530–541

    Article  CAS  PubMed  Google Scholar 

  • Hayashi Y, Kobayashi S, Nakato H (2009) Drosophila glypicans regulate the germline stem cell niche. J Cell Biol 187:473–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi Y, Sexton TR, Dejima K, Perry DW, Takemura M, Kobayashi S, Nakato H, Harrison DA (2012) Glypicans regulate JAK/STAT signaling and distribution of the Unpaired morphogen. Development (Cambr Engl) 139:4162–4171

    Article  CAS  Google Scholar 

  • Hsu HJ, Drummond-Barbosa D (2009) Insulin levels control female germline stem cell maintenance via the niche in Drosophila. Proc Natl Acad Sci U S A 106:1117–1121

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsu HJ, Drummond-Barbosa D (2011) Insulin signals control the competence of the Drosophila female germline stem cell niche to respond to Notch ligands. Dev Biol 350:290–300

    Article  CAS  PubMed  Google Scholar 

  • Inaba M, Buszczak M, Yamashita YM (2015) Nanotubes mediate niche-stem-cell signalling in the Drosophila testis. Nature 523:329–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawase E, Wong MD, Ding BC, Xie T (2004) Gbb/Bmp signaling is essential for maintaining germline stem cells and for repressing bam transcription in the Drosophila testis. Development (Cambr Engl) 131:1365–1375

    Article  CAS  Google Scholar 

  • Kiger AA, White-Cooper H, Fuller MT (2000) Somatic support cells restrict germline stem cell self-renewal and promote differentiation. Nature 407:750–754

    Article  CAS  PubMed  Google Scholar 

  • Kiger AA, Jones DL, Schulz C, Rogers MB, Fuller MT (2001) Stem cell self-renewal specified by JAK-STAT activation in response to a support cell cue. Science 294:2542–2545

    Article  CAS  PubMed  Google Scholar 

  • Kitadate Y, Kobayashi S (2010) Notch and Egfr signaling act antagonistically to regulate germ-line stem cell niche formation in Drosophila male embryonic gonads. Proc Natl Acad Sci U S A 107:14241–14246

    Article  PubMed  PubMed Central  Google Scholar 

  • Kitadate Y, Shigenobu S, Arita K, Kobayashi S (2007) Boss/Sev signaling from germline to soma restricts germline-stem-cell-niche formation in the anterior region of Drosophila male gonads. Dev Cell 13:151–159

    Article  CAS  PubMed  Google Scholar 

  • LaFever L, Drummond-Barbosa D (2005) Direct control of germline stem cell division and cyst growth by neural insulin in Drosophila. Science 309:1071–1073

    Article  CAS  PubMed  Google Scholar 

  • Le Bras S, Van Doren M (2006) Development of the male germline stem cell niche in Drosophila. Dev Biol 294:92–103

    Article  CAS  PubMed  Google Scholar 

  • Leatherman JL, Dinardo S (2010) Germline self-renewal requires cyst stem cells and stat regulates niche adhesion in Drosophila testes. Nat Cell Biol 12:806–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim JG, Fuller MT (2012) Somatic cell lineage is required for differentiation and not maintenance of germline stem cells in Drosophila testes. Proc Natl Acad Sci U S A 109:18477–18481

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin G, Xu N, Xi R (2008) Paracrine Wingless signalling controls self-renewal of Drosophila intestinal stem cells. Nature 455:1119–1123

    Article  CAS  PubMed  Google Scholar 

  • Morris LX, Spradling AC (2011) Long-term live imaging provides new insight into stem cell regulation and germline-soma coordination in the Drosophila ovary. Development (Cambridge, England) 138:2207–2215

    Article  CAS  Google Scholar 

  • Moussaieff A, Rouleau M, Kitsberg D, Cohen M, Levy G, Barasch D, Nemirovski A, Shen-Orr S, Laevsky I, Amit M et al (2015) Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metab 21:392–402

    Article  CAS  PubMed  Google Scholar 

  • Pan L, Chen S, Weng C, Call G, Zhu D, Tang H, Zhang N, Xie T (2007) Stem cell aging is controlled both intrinsically and extrinsically in the Drosophila ovary. Cell Stem Cell 1:458–469

    Article  CAS  PubMed  Google Scholar 

  • Prasad M, Jang AC, Starz-Gaiano M, Melani M, Montell DJ (2007) A protocol for culturing Drosophila melanogaster stage 9 egg chambers for live imaging. Nat Protoc 2:2467–2473

    Article  CAS  PubMed  Google Scholar 

  • Rojas-Rios P, Guerrero I, Gonzalez-Reyes A (2012) Cytoneme-mediated delivery of hedgehog regulates the expression of bone morphogenetic proteins to maintain germline stem cells in Drosophila. PLoS Biol 10:e1001298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roth TM, Chiang CY, Inaba M, Yuan H, Salzmann V, Roth CE, Yamashita YM (2012) Centrosome misorientation mediates slowing of the cell cycle under limited nutrient conditions in Drosophila male germline stem cells. Mol Biol Cell 23:1524–1532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy S, Huang H, Liu S, Kornberg TB (2014) Cytoneme-mediated contact-dependent transport of the Drosophila decapentaplegic signaling protein. Science 343:1244624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4:7–25

    PubMed  CAS  Google Scholar 

  • Sheng XR, Matunis E (2011) Live imaging of the Drosophila spermatogonial stem cell niche reveals novel mechanisms regulating germline stem cell output. Development (Cambridge, England) 138:3367–3376

    Article  CAS  Google Scholar 

  • Sheng XR, Posenau T, Gumulak-Smith JJ, Matunis E, Van Doren M, Wawersik M (2009) Jak-STAT regulation of male germline stem cell establishment during Drosophila embryogenesis. Dev Biol 334:335–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiraki N, Shiraki Y, Tsuyama T, Obata F, Miura M, Nagae G, Aburatani H, Kume K, Endo F, Kume S (2014) Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells. Cell Metab 19:780–794

    Article  CAS  PubMed  Google Scholar 

  • Song X, Xie T (2002) DE-cadherin-mediated cell adhesion is essential for maintaining somatic stem cells in the Drosophila ovary. Proc Natl Acad Sci U S A 99:14813–14818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song X, Wong MD, Kawase E, Xi R, Ding BC, McCarthy JJ, Xie T (2004) Bmp signals from niche cells directly repress transcription of a differentiation-promoting gene, bag of marbles, in germline stem cells in the Drosophila ovary. Development (Cambr Engl) 131:1353–1364

    Article  CAS  Google Scholar 

  • Song X, Call GB, Kirilly D, Xie T (2007) Notch signaling controls germline stem cell niche formation in the Drosophila ovary. Development (Cambr Engl) 134:1071–1080

    Article  CAS  Google Scholar 

  • Takubo K, Goda N, Yamada W, Iriuchishima H, Ikeda E, Kubota Y, Shima H, Johnson RS, Hirao A, Suematsu M et al (2010) Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell 7:391–402

    Article  CAS  PubMed  Google Scholar 

  • Tulina N, Matunis E (2001) Control of stem cell self-renewal in Drosophila spermatogenesis by JAK-STAT signaling. Science 294:2546–2549

    Article  CAS  PubMed  Google Scholar 

  • Uryu O, Ameku T, Niwa R (2015) Recent progress in understanding the role of ecdysteroids in adult insects: Germline development and circadian clock in the fruit fly Drosophila melanogaster. Zool Lett 1:32

    Article  Google Scholar 

  • Voog J, D’Alterio C, Jones DL (2008) Multipotent somatic stem cells contribute to the stem cell niche in the Drosophila testis. Nature 454:1132–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallenfang MR, Nayak R, DiNardo S (2006) Dynamics of the male germline stem cell population during aging of Drosophila melanogaster. Aging Cell 5:297–304

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Harris RE, Bayston LJ, Ashe HL (2008) Type IV collagens regulate BMP signalling in Drosophila. Nature 455:72–77

    Article  CAS  PubMed  Google Scholar 

  • Xie T, Spradling AC (1998) decapentaplegic is essential for the maintenance and division of germline stem cells in the Drosophila ovary. Cell 94:251–260

    Article  CAS  PubMed  Google Scholar 

  • Xie T, Spradling AC (2000) A niche maintaining germ line stem cells in the Drosophila ovary. Science 290:328–330

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S, Sukeno M, Nabeshima Y (2007) A vasculature-associated niche for undifferentiated spermatogonia in the mouse testis. Science 317:1722–1726

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors apologize to researchers whose pertinent work could not be cited due to space limitations. Research in our laboratory is supported by a Grant-in-Aid for Scientific Research (KAKENHI) on Innovative Areas (#26116730), KAKENHI for Young Scientists (A) (#25711020) to Y.H., and KAKENHI on Innovative Areas (#25114002) to S. K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiki Hayashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Japan KK, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hayashi, Y., Kobayashi, S. (2018). Regulatory Mechanisms of the Germline Stem Cell Niche in Drosophila melanogaster . In: Kobayashi, K., Kitano, T., Iwao, Y., Kondo, M. (eds) Reproductive and Developmental Strategies. Diversity and Commonality in Animals. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56609-0_2

Download citation

Publish with us

Policies and ethics