Advertisement

Reproductive Strategies in Annelida: Germ Cell Formation and Regeneration

Chapter
  • 1.1k Downloads
Part of the Diversity and Commonality in Animals book series (DCA)

Abstract

 Annelida are metameric, eucoelomate bilaterian worms belonging to Lophotrochozoa, which is a major group of protostomes. This phylum includes Polychaeta, Oligochaeta, Hirudinea (leeches), and Archiannelida, and it is an important link in the evolution of body plan, regeneration, and reproduction. Although annelids generally reproduce sexually, many species can switch to asexual reproduction, proliferating exponentially, as seen in planarians, hydras, and some other lower invertebrates. Asexual reproduction is achieved through dedifferentiation and through stem cells regeneration, instead of being based on germ cells as in the case of sexual reproduction. Thus, studies on regeneration mechanisms and germ cells are essential for understanding annelid reproduction. In this chapter, Annelida’s reproduction and germ cell formation and regeneration are reviewed. Based on our research on the oligochaete Enchytraeus japonensis, a unique process of germ cell regeneration during asexual reproduction is proposed.

Keywords

Annelida Germ cells PGCs Stem cells Regeneration Reproduction 

Notes

Acknowledgement

We would like to thank Editage (www.editage.jp) for English language editing.

References

  1. Akimenko MA, Johnson SL, Westerfield M, Ekker M (1995) Differential induction of four msx homeobox genes during fin development and regeneration in zebrafish. Development 121(2):347–357PubMedGoogle Scholar
  2. Avel M (1959) Classe des Anne’lides Oligoche’tes. Rev. Suisse Zool. Traite´ de Zoologie. Masson et Cie, ParisGoogle Scholar
  3. Avel M (1961) L’influence du system nerveux sur la regeneration chez les urodeles et les oligochaetes. Bull Soc Zool Fr86Google Scholar
  4. Bacci G, Bortesi O (1961) Pure males and females from hermaphroditic strains of Ophryotrocha puerilis. Experientia 17:229–230CrossRefPubMedGoogle Scholar
  5. Backfisch B, Veedin Rajan VB, Fischer RM, Lohs C, Arboleda E, Tessmar-Raible K, Raible F (2013) Stable transgenesis in the marine annelid Platynereis dumerilii sheds new light on photoreceptor evolution. Proc Natl Acad Sci U S A 110(1):193–198.  https://doi.org/10.1073/pnas.1209657109 CrossRefPubMedGoogle Scholar
  6. Backfisch B, Kozin VV, Kirchmaier S, Tessmar-Raible K, Raible F (2014) Tools for gene-regulatory analyses in the marine annelid Platynereis dumerilii. PLoS One 9(4):e93076.  https://doi.org/10.1371/journal.pone.0093076 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Baguna J (2012) The planarian neoblast: the rambling history of its origin and some current black boxes. Int J Dev Biol 56(1–3):19–37.  https://doi.org/10.1387/ijdb.113463jb CrossRefPubMedGoogle Scholar
  8. Bannister S, Antonova O, Polo A, Lohs C, Hallay N, Valinciute A, Raible F, Tessmar-Raible K (2014) TALENs mediate efficient and heritable mutation of endogenous genes in the marine annelid Platynereis dumerilii. Genetics 197(1):77–89.  https://doi.org/10.1534/genetics.113.161091 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bell AW (1959) Enchytraeus fragmentosus, a new species of naturally fragmenting oligochaete worm. Science (New York, NY) 129(3358):1278.  https://doi.org/10.1126/science.129.3358.1278-a CrossRefGoogle Scholar
  10. Bely AE (2006) Distribution of segment regeneration ability in the Annelida. Integr Comp Biol 46(4):508–518.  https://doi.org/10.1093/icb/icj051 CrossRefPubMedGoogle Scholar
  11. Bely AE, Wray GA (2001) Evolution of regeneration and fission in annelids: insights from engrailed- and orthodenticle-class gene expression. Development (Cambridge, England) 128(14):2781–2791Google Scholar
  12. Bentley MG, Olive PJW, Last K (2001) Sexual satellites, moonlight and the nuptial dances of worms: the influence of the moon on the reproduction of marine animals. Earth Moon Planet 85-86:67–84CrossRefGoogle Scholar
  13. Berrill NJ (1952) Regeneration and budding in worms. Biol Rev 27:401–438CrossRefGoogle Scholar
  14. Bilej M (1994) Cellular defense mechanisms. In: Vetvicka V, Sima P, Cooper EL, Bilej M, Roch P (eds) Immunology of annelids. CRC Press, Ann Arbor, pp 245–261Google Scholar
  15. Bouguenec V, Giani N (1989) Biological studies upon Enchytraeus variatus in breeding cultures. Hydrobiologia 180:151–165CrossRefGoogle Scholar
  16. Brusca RC, Brusca GJ (1990) Invertebrates. SINAUER Associates, Sunderland, MAGoogle Scholar
  17. Cho SJ, Valles Y, Weisblat DA (2014) Differential expression of conserved germ line markers and delayed segregation of male and female primordial germ cells in a hermaphrodite, the leech helobdella. Mol Biol Evol 31(2):341–354.  https://doi.org/10.1093/molbev/mst201 CrossRefPubMedGoogle Scholar
  18. Christensen B (1959) Asexual reproduction in the Enchytraeidae (Olig.) Nature 184:1159–1160CrossRefGoogle Scholar
  19. Christensen B (1964) Regeneration of a new anterior end in Enchytraeus bigeminus (Enchytraeidae, Oligochaeta). Vidensk Medd Dan Natrur Foren 127:259–273Google Scholar
  20. Cornec JP, Cresp J, Delye P, Hoarau F, Reynaud G (1987) Tissue responses and organogenesis during regeneration in the oliogochaete Limnodrilus hoffmeisteri (Clap.) Can J Zool 65:403–414CrossRefGoogle Scholar
  21. Cox DN, Chao A, Baker J, Chang L, Qiao D, Lin H (1998) A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev 12(23):3715–3727CrossRefPubMedPubMedCentralGoogle Scholar
  22. Cox DN, Chao A, Lin H (2000) piwi encodes a nucleoplasmic factor whose activity modulates the number and division rate of germline stem cells. Development 127(3):503–514PubMedGoogle Scholar
  23. Deng W, Lin H (2002) miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev Cell 2(6):819–830CrossRefPubMedGoogle Scholar
  24. Devries J (1971) Origine de la lignee germinale chez le lombricien Eisenia foetida. Ann Embryol Morphogen 4:37–43Google Scholar
  25. Dill KK, Seaver EC (2008) Vasa and nanos are coexpressed in somatic and germ line tissue from early embryonic cleavage stages through adulthood in the polychaete Capitella sp. I. Dev Genes Evol 218(9):453–463.  https://doi.org/10.1007/s00427-008-0236-x CrossRefPubMedGoogle Scholar
  26. Dorsett DA (1961) The reproduction and meintenance of Polydora ciliata (Johnst.) at Whitstable. J Mar Biol Ass 41:383–396CrossRefGoogle Scholar
  27. Eddy EM (1975) Germ plasm and the differentiation of the germ cell line. Int Rev Cytol 43:229–280CrossRefPubMedGoogle Scholar
  28. Edwards CA, Lofty JR (1972) Biology of earthworms. Chapman and Hall, LondonCrossRefGoogle Scholar
  29. Extavour CG, Akam M (2003) Mechanisms of germ cell specification across the metazoans: epigenesis and preformation. Development 130(24):5869–5884.  https://doi.org/10.1242/dev.00804 CrossRefPubMedGoogle Scholar
  30. Fischer A (1974) Stage and stage distribution in early oogenesis in the annelid, Platynereis dumerlii. Cell Tissue Res 156:35–45CrossRefPubMedGoogle Scholar
  31. Fischer A (1975) The structure of symplasmic early oocytes and their enveloping sheath cells in the polychaete, Platynereis dumerilii. Cell Tissue Res 160:327–343CrossRefPubMedGoogle Scholar
  32. Fujiwara Y, Komiya T, Kawabata H, Sato M, Fujimoto H, Furusawa M, Noce T (1994) Isolation of a DEAD-family protein gene that encodes a murine homolog of Drosophila vasa and its specific expression in germ cell lineage. Proc Natl Acad Sci U S A 91(25):12258–12262CrossRefPubMedPubMedCentralGoogle Scholar
  33. Gardiner DM, Blumberg B, Komine Y, Bryant SV (1995) Regulation of HoxA expression in developing and regenerating axolotl limbs. Development 121(6):1731–1741PubMedGoogle Scholar
  34. Gates GE (1943) Some further notes on regeneration in Perionyx excavatus. Proc Nat Acad Sci India 13:168–179Google Scholar
  35. Giani VC Jr, Yamaguchi E, Boyle MJ, Seaver EC (2011) Somatic and germline expression of piwi during development and regeneration in the marine polychaete annelid Capitella teleta. EvoDevo 2:10.  https://doi.org/10.1186/2041-9139-2-10 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Goodrich C (1945) Tbe study of nephridia and genital ducts since 1895. Quart Jour micr Sci 86:113–392Google Scholar
  37. Hauenschild C (1960) Lunar periodicity. Cold Spring Harb Symp Quant Biol 25:491–497CrossRefPubMedGoogle Scholar
  38. Herlant-Meewis H (1954) Etude histologique des Aeolosomatida au cours de la reproduction asexuee. Arch Biol 65:73–134Google Scholar
  39. Herlant-Meewis H (1964a) Reconstitution du germen chez Lumbricillus lineatus (Enchytraeides). Arch Biol Paris 57:197–306Google Scholar
  40. Herlant-Meewis H (1964b) Contribution a l’etude de la regeneration chez les Oligochetes. Reconstitution du germen chez Lumbricillus lineatus (Enchytraeides). Premiere partie: elements regenerateurs. Ann Soc Zool Belg 77:5–47Google Scholar
  41. Iwanoff PP (1928) Die entwicklung der Larvalsegmente bei den Anneliden. Z Morphol Okol 10:62–161CrossRefGoogle Scholar
  42. Izuka A (1903) Observations on the Japanese palolo, Ceratocephale osawai. J coll Sci Tokyo 17:1–37Google Scholar
  43. Jamieson BGM (1992) Annelida, Chapter 3 oligochaeta. In: Harrison FW, Gardiner SL (eds) Microscopics anatomy of invertebrates, vol 7. Wiley-Liss, New YorkGoogle Scholar
  44. Jamieson BGM (2006) Non leech Clitellata. Reproductive biology and phylogeny of annelida. SP Science Publishers, EnfieldGoogle Scholar
  45. Kang D, Pilon M, Weisblat DA (2002) Maternal and zygotic expression of a nanos-class gene in the leech Helobdella robusta: primordial germ cells arise from segmental mesoderm. Dev Biol 245(1):28–41.  https://doi.org/10.1006/dbio.2002.0615 CrossRefPubMedGoogle Scholar
  46. Kato Y, Nakamoto A, Shiomi I, Nakao H, Shimizu T (2013) Primordial germ cells in an oligochaete annelid are specified according to the birth rank order in the mesodermal teloblast lineage. Dev Biol 379(2):246–257.  https://doi.org/10.1016/j.ydbio.2013.04.028 CrossRefPubMedGoogle Scholar
  47. Khan P, Linkhart B, Simon HG (2002) Different regulation of T-box genes Tbx4 and Tbx5 during limb development and limb regeneration. Dev Biol 250(2):383–392CrossRefPubMedGoogle Scholar
  48. Kobayashi S, Yamada M, Asaoka M, Kitamura T (1996) Essential role of the posterior morphogen nanos for germline development in Drosophila. Nature 380(6576):708–711.  https://doi.org/10.1038/380708a0 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Koprunner M, Thisse C, Thisse B, Raz E (2001) A zebrafish nanos-related gene is essential for the development of primordial germ cells. Genes Dev 15(21):2877–2885.  https://doi.org/10.1101/gad.212401 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Kuramochi-Miyagawa S, Kimura T, Yomogida K, Kuroiwa A, Tadokoro Y, Fujita Y, Sato M, Matsuda Y, Nakano T (2001) Two mouse piwi-related genes: miwi and mili. Mech Dev 108(1–2):121–133CrossRefPubMedGoogle Scholar
  51. Kuramochi-Miyagawa S, Kimura T, Ijiri TW, Isobe T, Asada N, Fujita Y, Ikawa M, Iwai N, Okabe M, Deng W, Lin H, Matsuda Y, Nakano T (2004) Mili, a mammalian member of piwi family gene, is essential for spermatogenesis. Development 131(4):839–849.  https://doi.org/10.1242/dev.00973 CrossRefPubMedGoogle Scholar
  52. Lau NC, Seto AG, Kim J, Kuramochi-Miyagawa S, Nakano T, Bartel DP, Kingston RE (2006) Characterization of the piRNA complex from rat testes. Science (New York, NY) 313(5785):363–367.  https://doi.org/10.1126/science.1130164 CrossRefGoogle Scholar
  53. Lentz TL (1969) Cytological studies of muscle dedifferentiation and differentiation during limb regeneration of the newt Triturus. Am J Anat 124(4):447–479.  https://doi.org/10.1002/aja.1001240404 CrossRefPubMedGoogle Scholar
  54. Lo DC, Allen F, Brockes JP (1993) Reversal of muscle differentiation during urodele limb regeneration. Proc Natl Acad Sci U S A 90(15):7230–7234CrossRefPubMedPubMedCentralGoogle Scholar
  55. Malaquin A (1925) La ségrégation, au cours de l’ontogenèse, de deux cellules sexuelles primordiales, souches de la lignée germinale, chez Salmacina dysteri (Huxley). C R Acad Sci Paris 180:324–327Google Scholar
  56. Malaquin A (1934) Nouvelles observations sur la lignée germinale de l’Annélide Salmacina dysteri, Huxley. C R Acad Sci Paris 198:1804–1805Google Scholar
  57. Meyer A (1929) Die Entwicklung der Nephridien und Gonoblasten bei Tubifex rivulorum Lam. nebst Bemerkungen zum natürlichen System der Oligochâten. Z Wiss Zool 133:517–562Google Scholar
  58. Michaelsen W (1929) Zur Stammesgeschichte der Oligochaten. Z Wiss Zool 134:693–716Google Scholar
  59. Mochizuki K, Nishimiya-Fujisawa C, Fujisawa T (2001) Universal occurrence of the vasa-related genes among metazoans and their germline expression in Hydra. Dev Genes Evol 211(6):299–308CrossRefPubMedPubMedCentralGoogle Scholar
  60. Muller MC (2004) Nerve development, growth and differentiation during regeneration in Enchytraeus fragmentosus and Stylaria lacustris (Oligochaeta). Develop Growth Differ 46(5):471–478.  https://doi.org/10.1111/j.1440-169x.2004.00763.x CrossRefGoogle Scholar
  61. Myohara M, Yoshida-Noro C, Kobari F, Tochinai S (1999) Fragmenting oligochaete Enchytraeus japonensis: a new material for regeneration study. Develop Growth Differ 41(5):549–555CrossRefGoogle Scholar
  62. Nakamura Y (1993) A new fragmenting Enchytaeid species, Enchytraeus japonensis from a cropped Kuroboku soil in Fukushima, Northern Japan (Enchytraeids in japan 5). Edaphologia 50:37–39Google Scholar
  63. Okada K (1941) The gametogenesis, the breeding habits, and the early development of Arenicola cristata Stimpson, a tubicolous polychaete. Sci Rep Tohoku Imp Univ Biol 16:99–145Google Scholar
  64. Olive PJW, Clark RB (1978) Physiology of annelids. Physiology of reproduction. Academic, New YorkGoogle Scholar
  65. Oyama A, Shimizu T (2007) Transient occurrence of vasa-expressing cells in nongenital segments during embryonic development in the oligochaete annelid Tubifex tubifex. Dev Genes Evol 217(10):675–690.  https://doi.org/10.1007/s00427-007-0180-1 CrossRefPubMedGoogle Scholar
  66. Ozpolat BD, Bely AE (2015) Gonad establishment during asexual reproduction in the annelid Pristina leidyi. Dev Biol.  https://doi.org/10.1016/j.ydbio.2015.06.001
  67. Penners A, Stäblein A (1930) Über die Urkeimzellen bei Tubificiden (Tubifex rivulorum Lam. und Limnodrilus udekemianus Claparede). Z Wiss Zool 137:606–626Google Scholar
  68. Randolph H (1892) The regeneration of the tail in Lumbriculus. J Morphol 7:17–344CrossRefGoogle Scholar
  69. Rebscher N, Zelada-Gonzalez F, Banisch TU, Raible F, Arendt D (2007) Vasa unveils a common origin of germ cells and of somatic stem cells from the posterior growth zone in the polychaete Platynereis dumerilii. Dev Biol 306(2):599–611.  https://doi.org/10.1016/j.ydbio.2007.03.521 CrossRefPubMedGoogle Scholar
  70. Rebscher N, Lidke AK, Ackermann CF (2012) Hidden in the crowd: primordial germ cells and somatic stem cells in the mesodermal posterior growth zone of the polychaete Platynereis dumerillii are two distinct cell populations. EvoDevo 3:9.  https://doi.org/10.1186/2041-9139-3-9 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Reddien PW, Oviedo NJ, Jennings JR, Jenkin JC, Sanchez Alvarado A (2005) SMEDWI-2 is a PIWI-like protein that regulates planarian stem cells. Science (New York, NY) 310(5752):1327–1330.  https://doi.org/10.1126/science.1116110 CrossRefGoogle Scholar
  72. Rossi L, Salvetti A, Lena A, Batistoni R, Deri P, Pugliesi C, Loreti E, Gremigni V (2006) DjPiwi-1, a member of the PAZ-Piwi gene family, defines a subpopulation of planarian stem cells. Dev Genes Evol 216(6):335–346.  https://doi.org/10.1007/s00427-006-0060-0 CrossRefPubMedGoogle Scholar
  73. Sato K, Shibata N, Orii H, Amikura R, Sakurai T, Agata K, Kobayashi S, Watanabe K (2006) Identification and origin of the germline stem cells as revealed by the expression of nanos-related gene in planarians. Develop Growth Differ 48(9):615–628.  https://doi.org/10.1111/j.1440-169X.2006.00897.x CrossRefGoogle Scholar
  74. Sawada N (1975) Electron microscope study on sperm differentiation in marine annelid worms. II. Sperm differentiation in Arenicola brasiliensis. Develop Growth Differ 17:89–99CrossRefGoogle Scholar
  75. Schmelz RM, Collado R, Myohara M (2000) A taxonomic study of Enchytraeus japonensis (Enchytraeidae, Oligochaeta): morphological and biochemical comparisons with E. bigeminus. Zool Sci 17:505–516Google Scholar
  76. Schneider SQ, Bowerman B (2007) beta-Catenin asymmetries after all animal/vegetal- oriented cell divisions in Platynereis dumerilii embryos mediate binary cell-fate specification. Dev Cell 13(1):73–86.  https://doi.org/10.1016/j.devcel.2007.05.002 CrossRefPubMedGoogle Scholar
  77. Seipel K, Yanze N, Schmid V (2004) The germ line and somatic stem cell gene Cniwi in the jellyfish Podocoryne carnea. Int J Dev Biol 48(1):1–7CrossRefPubMedGoogle Scholar
  78. Shankland M, Savage RM (1997) Annelids, the segmented worms. In: Gilbert SF, Raunio AM (eds) Embryology: constructing the organisms. Sinauer, SunderlandGoogle Scholar
  79. Shibata N, Umesono Y, Orii H, Sakurai T, Watanabe K, Agata K (1999) Expression of vasa(vas)-related genes in germline cells and totipotent somatic stem cells of planarians. Dev Biol 206(1):73–87.  https://doi.org/10.1006/dbio.1998.9130 CrossRefPubMedGoogle Scholar
  80. Shimizu T (1980) Development in the freshwater oligochaete tubifex. Developmental biology of freshwater invertebrates. Alan R Liss, New YorkGoogle Scholar
  81. Stephenson J (1930) The Oligochaeta. Clarendon Press, OxfordGoogle Scholar
  82. Sugio M, Takeuchi K, Kutsuna J, Tadokoro R, Takahashi Y, Yoshida-Noro C, Tochinai S (2008) Exploration of embryonic origins of germline stem cells and neoblasts in Enchytraeus japonensis (Oligochaeta, Annelida). Gene Expr Patterns GEP 8(4):227–236.  https://doi.org/10.1016/j.gep.2007.12.008 CrossRefPubMedGoogle Scholar
  83. Sugio M, Yoshida-Noro C, Ozawa K, Tochinai S (2012) Stem cells in asexual reproduction of Enchytraeus japonensis (Oligochaeta, Annelid): proliferation and migration of neoblasts. Develop Growth Differ 54(4):439–450.  https://doi.org/10.1111/j.1440-169X.2012.01328.x CrossRefGoogle Scholar
  84. Tadokoro R (2009) Germ cell regeneration of Enchytraeus japonensis. Saishinigaku 93:81–93Google Scholar
  85. Tadokoro R, Sugio M, Kutsuna J, Tochinai S, Takahashi Y (2006) Early segregation of germ and somatic lineages during gonadal regeneration in the annelid Enchytraeus japonensis. Curr Biol 16(10):1012–1017.  https://doi.org/10.1016/j.cub.2006.04.036 CrossRefPubMedGoogle Scholar
  86. Takeo M, Yoshida-Noro C, Tochinai S (2008) Morphallactic regeneration as revealed by region-specific gene expression in the digestive tract of Enchytraeus japonensis (Oligochaeta, Annelida). Dev Dyn Off Publ Am Assoc Anatomists 237(5):1284–1294.  https://doi.org/10.1002/dvdy.21518 CrossRefGoogle Scholar
  87. Tsuda M, Sasaoka Y, Kiso M, Abe K, Haraguchi S, Kobayashi S, Saga Y (2003) Conserved role of nanos proteins in germ cell development. Science (New York, NY) 301(5637):1239–1241.  https://doi.org/10.1126/science.1085222 CrossRefGoogle Scholar
  88. Tweeten KA, Reiner A (2012) Characterization of serine proteases of Lumbriculus variegatus and their role in regeneration. Invertebr Biol 131:322–332CrossRefGoogle Scholar
  89. Vannini E (1947) Neoblasti e rigenerazione dei segmenti genitali nel serpulide ermafrodita Salmacina incrustans., vol 1stGoogle Scholar
  90. Weisblat DA, Harper G, Stent GS, Sawyer RT (1980) Embryonic cell lineages in the nervous system of the glossiphoniid leech Helobdella triserialis. Dev Biol 76(1):58–78CrossRefPubMedGoogle Scholar
  91. Yoon C, Kawakami K, Hopkins N (1997) Zebrafish vasa homologue RNA is localized to the cleavage planes of 2- and 4-cell-stage embryos and is expressed in the primordial germ cells. Development 124(16):3157–3165PubMedGoogle Scholar
  92. Yoshida-Noro C, Tochinai S (2010) Stem cell system in asexual and sexual reproduction of Enchytraeus japonensis (Oligochaeta, Annelida). Develop Growth Differ 52(1):43–55.  https://doi.org/10.1111/j.1440-169X.2009.01149.x CrossRefGoogle Scholar
  93. Yoshida-Noro C, Myohara M, Kobari F, Tochinai S (2000) Nervous system dynamics during fragmentation and regeneration in Enchytraeus japonensis (Oligochaeta, Annelida). Dev Genes Evol 210(6):311–319.  https://doi.org/10.1007/s004270050318 CrossRefPubMedGoogle Scholar
  94. Zantke J, Bannister S, Rajan VB, Raible F, Tessmar-Raible K (2014) Genetic and genomic tools for the marine annelid Platynereis dumerilii. Genetics 197(1):19–31.  https://doi.org/10.1534/genetics.112.148254 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Zoology, Graduate School of ScienceKyoto UniversityKyotoJapan

Personalised recommendations