Advertisement

Examples of Flux-Grown Crystals

Chapter
  • 851 Downloads
Part of the NIMS Monographs book series (NIMSM)

Abstract

The previous chapters have focused on the growth of single crystals, and very little discussion was made on their interesting physical properties. To give better ideas on the variety of crystals grown with the flux method, this chapter presents 12 examples of flux-grown crystals that are well-known to many researchers. The types of compounds presented include a high-temperature superconductor, low-dimensional quantum magnet, geometrically frustrated magnet, non-linear optical material, colossal magnetoresistive compound, relaxor ferroelectric, topological Kondo insulator, multiferroic, and metal-insulator transition compound. The examples are chosen mainly because the growth conditions for high-quality crystal are well documented. This chapter presents the photographs of the crystals and the recipes used to grow the crystals. Each photograph is accompanied by comments on the compound and its place in solid-state research.

Keywords

High-temperature superconductivity Low-dimensional quantum magnetism Colossal magnetoresistance Relaxor ferroelectrics Topological kondo insulators 

References

  1. 1.
    N. Ni, M.E. Tillman, J.-Q. Yan, A. Kracher, S.T. Hannahs, S.L. Bud’ko, P.C. Canfield, Phys. Rev. B 78, 214515 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    A.P. Mackenzie, Y. Maeno, Rev. Mod. Phys. 75, 657–712 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono, J. Am. Chem. Soc. 130, 3296–3297 (2008)CrossRefGoogle Scholar
  4. 4.
    J. Paglione, R.L. Greene, Nat. Phys. 6, 645–658 (2010)CrossRefGoogle Scholar
  5. 5.
    G.H. Larson, A.W. Sleight, Phys. Lett. 28A, 203–204 (1968)ADSCrossRefGoogle Scholar
  6. 6.
    R.P. van Stapele, in Ferromagnetic Materials, vol. 3, ed. by E.P. Wohlfarth, (North-Holland, Amsterdam, 1982), pp. 603–745Google Scholar
  7. 7.
    K.G. Barraclough, Prog. Cryst. Growth Charact. 1, 57–84 (1977)CrossRefGoogle Scholar
  8. 8.
    E.I. Speranskaya, Inorg. Mater. (USSR) 3, 1271–1277 (1967)Google Scholar
  9. 9.
    P. Lemmens, G. Güntherodt, C. Gros, Phys. Rep. 35, 1–103 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    M. Hase, I. Terasaki, K. Uchinokura, Phys. Rev. Lett. 70, 3651–3654 (1993)ADSCrossRefGoogle Scholar
  11. 11.
    B.M. Wanklyn, A. Maqsood, J. Mater. Sci. 14, 1975–1981 (1979)ADSCrossRefGoogle Scholar
  12. 12.
    L. Pauling, J. Am. Chem. Soc. 57, 2680–2684 (1935)CrossRefGoogle Scholar
  13. 13.
    S.T. Bramwell, M.J.P. Gingras, Science 294, 1495–1501 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    C. Castelnovo, R. Moessner, S.L. Sondhi, Nature 451, 42–45 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    C. Castelnovo, R. Moessner, S.L. Sondhi, Annu. Rev. Condens. Matter Phys. 3, 35–55 (2012)CrossRefGoogle Scholar
  16. 16.
    M. Safa, B.K. Tanner, B.J. Garrard, B.M. Wanklyn, J. Cryst. Growth 39, 243–249 (1977)ADSCrossRefGoogle Scholar
  17. 17.
    L.J. de Jongh, A.R. Miedema, Adv. Phys. 23, 1–260 (1974)ADSCrossRefGoogle Scholar
  18. 18.
    A.A. Ballman, H. Brown, D.H. Olson, C.E. Rice, J. Cryst. Growth 75, 390–394 (1986)ADSCrossRefGoogle Scholar
  19. 19.
    P. Thomas, Phys. World 3(3), 34–38 (1990)CrossRefGoogle Scholar
  20. 20.
    N. Ghosh, S. Elizabeth, H.L. Bhat, U.K. Rößler, K. Nenkov, S. Rößler, K. Dörr, K.-H. Müller, Phys. Rev. B 70, 184436 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    M.B. Salamon, M. Jaime, Rev. Mod. Phys. 73, 583–628 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    Y. Tokura, Rep. Prog. Phys. 69, 797–851 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    T. Tanaka, H. Takei, J. Cryst. Growth 180, 206–211 (1997)ADSCrossRefGoogle Scholar
  24. 24.
    T. Liu, Geophys. Res. Lett. 2, 417–419 (1975)ADSCrossRefGoogle Scholar
  25. 25.
    M. Murakami, K. Hirose, K. Kawamura, N. Sata, Y. Ohishi, Science 304, 855–858 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    L. Zhang, M. Dong, Z.-G. Ye, Mater. Sci. Eng., B 78, 96–104 (2000)CrossRefGoogle Scholar
  27. 27.
    A.A. Bokov, Z.-G. Ye, J. Mater. Sci. 41, 31–52 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    V.N. Gurin, M.M. Korsukova, S.P. Nikanorov, I.A. Smirnov, N.N. Stepanov, S.G. Shul’man, J. Less-Common Met. 67, 115–123 (1979)Google Scholar
  29. 29.
    A. Menth, E. Buehler, T.H. Geballe, Phys. Rev. Lett. 22, 295–297 (1969)ADSCrossRefGoogle Scholar
  30. 30.
    G. Aeppli, Z. Fisk, Comments Condens. Matter Phys. 16, 155–165 (1992)Google Scholar
  31. 31.
    J.E. Moore, Nature 464, 194–198 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    M. Dzero, K. Sun, V. Galitski, P. Coleman, Phys. Rev. Lett. 104, 106408 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    B.M. Wanklyn, J. Mater. Sci. 7, 813–821 (1972)ADSCrossRefGoogle Scholar
  34. 34.
    N.A. Hill, J. Phys. Chem. B 104, 6694–6709 (2000)CrossRefGoogle Scholar
  35. 35.
    T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Nature 426, 55–58 (2003)ADSCrossRefGoogle Scholar
  36. 36.
    S.-W. Cheong, M. Mostovoy, Nat. Mater. 6, 13–20 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guha, S.-W. Cheong, Nature 429, 392–395 (2004)ADSCrossRefGoogle Scholar
  38. 38.
    H. Sasaki, A. Watanabe, J. Phys. Soc. Jpn. 19, 1748 (1964)ADSCrossRefGoogle Scholar
  39. 39.
    M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70, 1039–1263 (1998)ADSCrossRefGoogle Scholar
  40. 40.
    F.J. Morin, Phys. Rev. Lett. 3, 34–36 (1959)ADSCrossRefGoogle Scholar
  41. 41.
    J.H. Park, J.M. Coy, T.S. Kasirga, C. Huang, Z. Fei, S. Hunter, D.H. Cobden, Nature 500, 431–434 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    J.D. Budai, J. Hong, M.E. Manley, E.D. Specht, C.W. Li, J.Z. Tischler, D.L. Abernathy, A.H. Said, B.M. Leu, L.A. Boatner, R.J. McQueeney, O. Delaire, Nature 515, 535–539 (2014)ADSCrossRefGoogle Scholar

Copyright information

© National Institute for Materials Science, Japan 2017

Authors and Affiliations

  1. 1.National Institute for Materials ScienceTsukubaJapan

Personalised recommendations