Choosing a Flux

Part of the NIMS Monographs book series (NIMSM)


Although phase diagrams provide valuable information on proper growth conditions, they cannot be used to predict the size and quality of the crystals that will result from flux growth. While these features of crystals depend on the combination of various factors, the limits of what can be achieved in size and quality are often determined by the properties of the flux, and how the flux interacts with the solute compound at high temperatures. This chapter lists the 10 properties of an ideal flux, and discusses why these properties are important for successful flux growth. It is shown that as an ideal flux does not exist in most cases, a compromise is frequently made and a suitable flux is chosen based on the most important requirements. Also, a combination of compounds is often used to optimize properties. This chapter then discusses the typical fluxes used for growth of oxide compounds, using tables to show their basic properties and some of the crystals grown from these fluxes. Similar discussion then follows on growth of intermetallic compounds, where metallic elements are often used as a flux.


Solubility Melting point Volatility Viscosity Self-flux 


  1. 1.
    D. Elwell, H.J. Scheel, Crystal Growth from High-Temperature Solutions (Academic Press, London, 1975)Google Scholar
  2. 2.
    B.M. Wanklyn, S.H. Smith, G. Garton, J. Cryst. Growth 33, 150–154 (1976)ADSCrossRefGoogle Scholar
  3. 3.
    B.M. Wanklyn, in Crystal Growth, ed. by B.R. Pamplin (Pergamon, Oxford, 1975), pp. 217–288Google Scholar
  4. 4.
    M. Tachibana, J. Yamazaki, H. Kawaji, T. Atake, Phys. Rev. B 72, 064434 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Matsushita, H. Ueda, Y. Ueda, Nat. Mater. 4, 845–850 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    M. Vichr, H. Makram, J. Cryst. Growth 5, 77–78 (1969)ADSCrossRefGoogle Scholar
  7. 7.
    T. Sekiya, Mater. Res. Bull. 16, 841–846 (1981)CrossRefGoogle Scholar
  8. 8.
    W. Kunnmann, A. Ferretti, R.J. Arnott, D.B. Rogers, J. Phys. Chem. Solids 26, 311–314 (1965)ADSCrossRefGoogle Scholar
  9. 9.
    J.N. Millican, R.T. Macaluso, S. Nakatsuji, Y. Machida, Y. Maeno, J.Y. Chan, Mater. Res. Bull. 42, 928–934 (2007)CrossRefGoogle Scholar
  10. 10.
    D. Rytz, H.J. Scheel, J. Cryst. Growth 59, 468–484 (1982)ADSCrossRefGoogle Scholar
  11. 11.
    D.E. Bugaris, H.-C. Zur Loye, Angew. Chem. Int. Ed. 51, 3780–3811 (2012)CrossRefGoogle Scholar
  12. 12.
    R.J. Bouchard, J.L. Gillson, Mater. Res. Bull. 7, 873–878 (1972)CrossRefGoogle Scholar
  13. 13.
    C.G.F. Blum, A. Holcombe, M. Gellesch, M.I. Sturza, S. Rodan, R. Morrow, A. Maljuk, P. Woodward, P. Morris, A.U.B. Wolter, B. Büchner, S. Wurmehl, J. Cryst. Growth 421, 39–44 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    I.R. Fisher, M.C. Shapiro, J.G. Analytis, Philos. Mag. 92, 2401–2435 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    S.J. Mugavero, W.R. Gemmill, P. Roof, H.-C. Zur Loye, J. Solid State Chem. 182, 1950–1963 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    B.M. Wankly, J. Cryst. Growth 37, 334–342 (1977)ADSCrossRefGoogle Scholar
  17. 17.
    B.M. Wankly, J. Cryst. Growth 43, 336–344 (1978)ADSCrossRefGoogle Scholar
  18. 18.
    B.M. Wankly, J. Cryst. Growth 65, 533–540 (1983)ADSCrossRefGoogle Scholar
  19. 19.
    Z. Fisk, J.P. Remeika, in Handbook on the Physics and Chemistry of Rare Earths, vol. 12, ed. by K.A. Gschneider Jr., L. Eyring (Elsevier, Amsterdam, 1989), pp. 53–70Google Scholar
  20. 20.
    P.C. Canfield, Z. Fisk, Philos. Mag. B 65, 1117–1123 (1992)ADSCrossRefGoogle Scholar
  21. 21.
    P.C. Canfield, I.R. Fisher, J. Cryst. Growth 225, 155–161 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    P.C. Canfield, in Properties and Applications of Complex Intermetallics, ed. by E. Belin-Ferré (World Scientific, Singapore, 2010), pp. 93–111Google Scholar

Copyright information

© National Institute for Materials Science, Japan 2017

Authors and Affiliations

  1. 1.National Institute for Materials ScienceTsukubaJapan

Personalised recommendations