Part of the NIMS Monographs book series (NIMSM)


This chapter begins by describing the importance of single crystals and crystal growth in solid-state research, the difference between single crystals and polycrystals, the size of single crystals needed for physical property measurements, and the types of crystals frequently studied by solid-state physicists. The uses of single crystals in solid-state chemistry, applied physics, and mineralogy are also discussed. An overview of flux growth is then presented, using the growth of ruby crystals as an example. Then, other methods of crystal growth, including crystal growth from the melts, solutions, and vapors, are described. The comparison between various techniques of crystal growth underscores the important features of flux growth in solid-state research. This chapter ends by providing various resources on flux growth, where the theories and practices of flux growth have been reported previously.


Flux growth Solid-state research The physical property measurement system Crystal growth from high-temperature solutions 


  1. 1.
    M. Tachibana, H. Kawaji, T. Atake, Phys. Rev. B 70, 064103 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    T. Feder, Phys. Today 60(8), 26–28 (2007)CrossRefGoogle Scholar
  3. 3.
    P.C. Canfield, Nat. Phys. 4, 167–169 (2008)CrossRefGoogle Scholar
  4. 4.
    Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y.S. Hor, R.J. Cava, M.Z. Hasan, Nat. Phys. 5, 398–402 (2009)CrossRefGoogle Scholar
  5. 5.
    M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang, C.W. Chu, Phys. Rev. Lett. 58, 908–910 (1987)ADSCrossRefGoogle Scholar
  6. 6.
    R.J. Cava, B. Batlogg, R.B. van Dover, D.W. Murphy, S. Sunshine, T. Siegrist, J.P. Remeika, E.A. Rietman, S. Zahurak, G.P. Espinosa, Phys. Rev. Lett. 58, 1676–1679 (1987)ADSCrossRefGoogle Scholar
  7. 7.
    H. Kikuchi, Y. Fujii, M. Chiba, S. Mitsudo, T. Idehara, T. Tonegawa, K. Okamoto, T. Sakai, T. Kuwai, H. Ohta, Phys. Rev. Lett. 94, 227201 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    P. Gehring, H.M. Benia, Y. Weng, R. Dinnebier, C.R. Ast, M. Burghard, K. Kern, Nano Lett. 13, 1179–1184 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    T.H. Maiman, Nature 187, 493–494 (1960)ADSCrossRefGoogle Scholar
  10. 10.
    R.C. Linares, J. Phys. Chem. Solids 26, 1817–1820 (1965)ADSCrossRefGoogle Scholar
  11. 11.
    D. Aoki, Y. Haga, T.D. Matsuda, N. Tateiwa, S. Ikeda, Y. Homma, H. Sakai, Y. Shiokawa, E. Yamamoto, A. Nakamura, R. Settai, Y. Onuki, J. Phys. Soc. Jpn. 76, 063701 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    R. Liang, D.A. Bonn, W.N. Hardy, Philos. Mag. 92, 2563–2581 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Hidaka, M. Suzuki, Prog. Cryst. Growth Charact. Mater. 23, 179–243 (1991)CrossRefGoogle Scholar
  14. 14.
    N. Ghosh, S. Elizabeth, H.L. Bhat, U.K. Rößler, K. Nenkov, S. Rößler, K. Dörr, K.-H. Müller, Phys. Rev. B 70, 184436 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    T. Yankova, D. Hüvonen, S. Mühlbauer, D. Schmidiger, E. Wulf, S. Zhao, A. Zheldev, T. Hong, V.O. Garlea, R. Custelcean, G. Ehlers, Philos. Mag. 92, 2629–2647 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    D. Elwell, H.J. Scheel, Crystal Growth from High-Temperature Solutions (Academic Press, London, 1975)Google Scholar
  17. 17.
    R.A. Laudise, in The Art and Science of Growing Crystals, ed. by J. J. Gilman (Wiley, New York, 1963), pp. 252–273Google Scholar
  18. 18.
    E.A.D. White, in Technique of Inorganic Chemistry, vol. 4, ed. by H.B. Jonassen, A. Weissberger (Wiley, New York, 1965), pp. 31–64Google Scholar
  19. 19.
    J.B. Schroeder, R.C. Linares, in Progress in Ceramic Science, vol. 4, ed. by J.E. Burke (Academic Press, London, 1966), pp. 196–216Google Scholar
  20. 20.
    R.A. Laudise, The Growing of Single Crystals (Prentice Hall, Engelwood Cliffs, N. J., 1970)Google Scholar
  21. 21.
    A.B. Chase, in Preparation and Properties of Solid State Materials, vol. 1, ed. by R.A. Lefever (Dekker, New York, 1971), pp. 183–264Google Scholar
  22. 22.
    A.M. Anthony, R. Collongues, in Preparative Methods in Solid State Chemistry, ed. by P. Hagenmuller (Academic Press, New York, 1972), pp. 147–249Google Scholar
  23. 23.
    J.C. Brice, The Growth of Crystals from Liquids (North-Holland, Amsterdam, 1973)Google Scholar
  24. 24.
    D. Elwell, in Crystal Growth, ed. by B.R. Pamplin (Pergamon, Oxford, 1975), pp. 185–216Google Scholar
  25. 25.
    B. Wanklyn, in Crystal Growth, ed. by B.R. Pamplin (Pergamon, Oxford, 1975), pp. 217–288Google Scholar
  26. 26.
    R.A. Laudise, in Treatise on Solid State Chemistry, vol. 5, ed. by N.B. Hannay (Plenum Press, New York, 1975), pp. 407–461Google Scholar
  27. 27.
    D. Elwell, in Crystal Growth, Second edition, ed. by B.R. Pamplin (Pergamon, Oxford, 1980), pp. 463–483Google Scholar
  28. 28.
    H.J. Scheel, Prog. Cryst. Growth Charact. 5, 277–290 (1982)CrossRefGoogle Scholar
  29. 29.
    B. Wanklyn, J. Cryst. Growth 65, 533–540 (1983)ADSCrossRefGoogle Scholar
  30. 30.
    W. Tolksdorf, in Crystal Growth of Electronic Materials, ed. by E. Kaldis (Elsevier, Amsterdam, 1985), pp. 175–182Google Scholar
  31. 31.
    J.C. Brice, Crystal Growth Processes (Blackie, Glasgow, 1986)Google Scholar
  32. 32.
    E.A. Giess, in Advanced Crystal Growth, ed. by P.M. Dryburgh, B. Cockayne, K.G. Barraclough (Prentice Hall, London, 1987), pp. 245–265Google Scholar
  33. 33.
    D. Elwell, in Crystal Growth in Science and Technology, ed. by H. Ahrend, J. Hulliger (Plenum Press, New York, 1989), pp. 133–142Google Scholar
  34. 34.
    E. Pollert, M. Nevřiva, S. Durčok, Prog. Cryst. Growth Charact. Mater. 22, 143–182 (1991)CrossRefGoogle Scholar
  35. 35.
    W. Tolksdorf, in Handbook of Crystal Growth, vol. 2, ed. by D.T.J. Hurle (Elsevier, Amsterdam, 1994), pp. 563–611Google Scholar
  36. 36.
    D.E. Bugaris, H.-C. zur Loye, Angew. Chem. Int. Ed. 51, 3780–3811 (2012)Google Scholar
  37. 37.
    N.P. Luzhnaya, J. Cryst. Growth 3–4, 97–107 (1968)ADSCrossRefGoogle Scholar
  38. 38.
    R.H. Deitch, in Crystal Growth, ed. by B.R. Pamplin (Pergamon, Oxford, 1975), pp. 428–496Google Scholar
  39. 39.
    V.N. Gurin, M.M. Korsukova, Prog. Cryst. Growth Charact. 6, 59–101 (1983)CrossRefGoogle Scholar
  40. 40.
    T. Lundström, J. Less-Common Metals 100, 215–228 (1984)CrossRefGoogle Scholar
  41. 41.
    Z. Fisk, J.P. Remeika, in Handbook on the Physics and Chemistry of Rare Earths, vol. 12, ed. by K.A. Gschneider, Jr., L. Eyring (Elsevier, Amsterdam, 1989), pp. 53–70Google Scholar
  42. 42.
    P.C. Canfield, Z. Fisk, Philos. Mag. B 65, 1117–1123 (1992)ADSCrossRefGoogle Scholar
  43. 43.
    P.C. Canfield, I.R. Fisher, J. Cryst. Growth 225, 155–161 (2001)ADSCrossRefGoogle Scholar
  44. 44.
    M.G. Kanatzidis, R. Pöttgen, W. Jeitschko, Angew. Chem. Int. Ed. 44, 6996–7023 (2005)Google Scholar
  45. 45.
    E.L. Thomas, J.N. Millican, E.K. Okudzeto, J.Y. Chan, Comments Inorg. Chem. 27, 1–39 (2006)CrossRefGoogle Scholar
  46. 46.
    P.C. Canfield, in Properties and Applications of Complex Intermetallics, ed. by E. Belin-Ferré (World Scientific, Singapore, 2010), pp. 93–111Google Scholar
  47. 47.
    W.A. Phelan, M.C. Menard, M.J. Kandas, G.T. McCandless, B.L. Drake, J.Y. Chan, Chem. Mater. 24, 409–420 (2012)CrossRefGoogle Scholar
  48. 48.
    C. Petrovic, P.G. Pagliuso, M.F. Hundley, R. Movshovich, J.L. Sarrao, J.D. Thompson, Z. Fisk, P. Monthoux, J. Phys.: Condens. Matter 13, L337–L342 (2001)ADSGoogle Scholar
  49. 49.
    R.E. Baumbach, Z. Fisk, F. Ronning, R. Movshovich, J.D. Thompson, E.D. Bauer, Philos. Mag. 94, 3663–3671 (2014)ADSCrossRefGoogle Scholar
  50. 50.
    M.D. Lumsden, B.D. Gaulin, H. Dabkowska, M.L. Plumer, Phys. Rev. Lett. 76, 4919–4922 (1996)ADSCrossRefGoogle Scholar
  51. 51.
    B.M. Wanklyn, A. Maqsood, J. Mater. Sci. 14, 1975–1981 (1979)ADSCrossRefGoogle Scholar
  52. 52.
    A. Kania, A. Słodczyk, Z. Ujma, J. Cryst. Growth 289, 134–139 (2006)ADSCrossRefGoogle Scholar
  53. 53.
    B.M. Wanklyn, J. Mater. Sci. 7, 813–821 (1972)ADSCrossRefGoogle Scholar
  54. 54.
    R. Palai, R.S. Katiyar, H. Schmid, P. Tissot, S.J. Clark, J. Robertson, S.A.T. Redfern, G. Catalan, J.F. Scott, Phys. Rev. B 77, 014110 (2008)ADSCrossRefGoogle Scholar
  55. 55.
    D.P. Chen, C.T. Lin, Supercond. Sci. Technol. 27, 103002 (2014)ADSCrossRefGoogle Scholar
  56. 56.
    I.R. Fisher, M.C. Shapiro, J.G. Analytis, Philos. Mag. 92, 2401–2435 (2012)ADSCrossRefGoogle Scholar
  57. 57.
    V.N. Gurin, M.M. Korsukova, S.P. Nikanorov, I.A. Smirnov, N.N. Stepanov, S.G. Shul’man, J. Less-Common Met. 67, 115–123 (1979)CrossRefGoogle Scholar

Copyright information

© National Institute for Materials Science, Japan 2017

Authors and Affiliations

  1. 1.National Institute for Materials ScienceTsukubaJapan

Personalised recommendations