The Brain, the Braincase, and the Morphospace

  • Emiliano BrunerEmail author
Part of the Replacement of Neanderthals by Modern Humans Series book series (RNMH)


Morphological integration deals with the functional and structural associations, at ontogenetic and evolutionary level, between anatomical traits. Current morphometric tools can be used to analyze anatomical systems in terms of the mutual relationships shared among their components. The brain has no fixed and rigid form, but rather it is largely shaped by a set of mechanical forces involving bones, connectives, and vessels. During morphogenesis, the brain and braincase exert reciprocal influences associated with size and shape changes of soft and hard tissues. The available evidence suggests that such influences are usually based on local interactions, more than on general schemes or long-range effects. The frontal, temporal, and cerebellar lobes have a direct spatial association with the facial block and with the endocranial base, sharing several morphogenetic factors and geometric constraints with these areas. The frontal, parietal, and occipital bones are more directly shaped by the cortical brain surface, but they have constraints associated with bone articulations and reciprocal spatial adjustments. The final phenotype, selected by evolutionary processes, is an admixture of adaptations, secondary consequences, and structural regulations. The set of rules that govern phenotypic variability can be revealed and quantified by using multivariate statistics. The occupation of multivariate morphological space (morphospace) depends on the underlying structural organization and on ecological and phylogenetic constraints. Therefore, the geometric study of morphospace occupation parameters can reveal the rules of variability behind the observed morphological diversity. These intrinsic properties of endocranial variation must be nonetheless interpreted taking into account information from brain, bones, connectives, and vessels, and the data resulting from these quantitative analyses should be used to plan specialized biological surveys.


Endocast Disparity Morphological diversity Functional craniology Paleoneurology Morphological integration Multivariate statistics Principal component analysis 



This paper is funded by the Spanish Government (CGL2015-65387-C3-3-P). I am grateful to Naomichi Ogihara, Hideki Amano, Aida Gómez-Robles, David Costantini, David Polly, José Manuel de la Cuétara, Sofia Pereira-Pedro, Gizéh Rangel de Lázaro, Hana Píšová, Markus Bastir, Michael Masters, Sheela Athreya, Diego Rasskin-Gutman, Borja Esteve-Altava, and Simon Neubauer for their collaboration and suggestions on the topics presented in this manuscript. A special acknowledgment goes to Ralph Holloway, for providing his invaluable database, for his constant support, and for his friendship.


  1. Albrecht GH, Miller JM (1993) Geographic variation in primates: a review with implications for interpreting fossils. In: Kimbel WH, Martin L (eds) Species, species concepts, and primate evolution. Plenum Press, New York, pp 123–161CrossRefGoogle Scholar
  2. Aldridge K, Marsh JL, Govier D, Richtsmeier JT (2002) Central nervous system phenotypes in craniosynostosis. J Anat 201:31–39CrossRefGoogle Scholar
  3. Allen JS, Damasio H, Grabowski TJ (2002) Normal neuroanatomical variation in the human brain: an MRI-volumetric study. Am J Phys Anthropol 118:341–358CrossRefGoogle Scholar
  4. Arsuaga JL, Martinez I, Arnold LJ, Aranburu A, Gracia-Tellez A, Sharp WD, Quam RM, Falgueres C, Pantoja-Perez A, Bischoff J, Poza-Rey E, Pares JM, Carretero JM, Demuro M, Lorenzo C, Sala N, Martinon-Torres M, Garcia N, de Velasco A (2014) Neandertal roots: cranial and chronological evidence from Sima de los Huesos. Science 344:1358–1363CrossRefGoogle Scholar
  5. Baab KL (2016) The role of neurocranial shape in defining the boundaries of an expanded Homo erectus hypodigm. J Hum Evol 92:1–21CrossRefGoogle Scholar
  6. Barberini F, Bruner E, Cartolari R, Franchitto G, Heyn R, Ricci F, Manzi G (2008) An unusually-wide human bregmatic Wormian bone: anatomy, tomographic description, and possible significance. Surg Radiol Anat 30:683–687CrossRefGoogle Scholar
  7. Bastir M, Rosas A (2005) Hierarchical nature of morphological integration and modularity in the human posterior face. Am J Phys Anthropol 128:26–34CrossRefGoogle Scholar
  8. Bastir M, Rosas A (2006) Correlated variation between the lateral basicranium and the face: a geometric morphometric study in different human groups. Arch Oral Biol 51:814–824CrossRefGoogle Scholar
  9. Bastir M, Rosas A (2009) Mosaic evolution of the basicranium in Homo and its relation to modular development. Evol Biol 36:57–70CrossRefGoogle Scholar
  10. Bastir M, Rosas A, Kuroe K (2004) Petrosal orientation and mandibular ramus breadth: evidence for an integrated petroso-mandibular developmental unit. Am J Phys Anthropol 123:340–350CrossRefGoogle Scholar
  11. Bastir M, Rosas A, O’Higgins P (2006) Craniofacial levels and the morphological maturation of the human skull: spatiotemporal pattern of cranial ontogeny. J Anat 209:637–654CrossRefGoogle Scholar
  12. Bayly PV, Taber LA, Kroenke CD (2014) Mechanical forces in cerebral cortical folding: a review of measurements and models. J Mech Behav Biomed Mater 29:568–581CrossRefGoogle Scholar
  13. Beaudet A, Bruner E (2017) A frontal lobe surface analysis in three archaic African human fossils: OH 9, Buia, and Bodo. Comptes Redus Palevol 16:499–507Google Scholar
  14. Bellary SS, Steinberg A, Mirzayan N, Shirak M, Tubbs RS, Cohen-Gadol AA, Loukas M (2013) Wormian bones: a review. Clin Anat 26:922–927CrossRefGoogle Scholar
  15. Bienvenu T, Guy F, Coudyzer W et al (2011) Assessing endocranial variations in great apes and humans using 3D data from virtual endocasts. Am J Phys Anthropol 145:231–246CrossRefGoogle Scholar
  16. Bookstein FL (1991) Morphometric tools for landmark data. Cambridge University Press, New YorkGoogle Scholar
  17. Bruner E (2004) Geometric morphometrics and paleoneurology: brain shape evolution in the genus Homo. J Hum Evol 47:279–303CrossRefGoogle Scholar
  18. Bruner E (2013) The species concept as a cognitive tool for biological anthropology. Am J Primatol 75:10–15CrossRefGoogle Scholar
  19. Bruner E (2014) Functional craniology, human evolution, and anatomical constraints in the Neanderthal braincase. In: Akazawa T, Ogihara N, Tanabe HC, Terashima H (eds) Dynamics of learning in Neanderthals and modern humans, vol 2. Springer, Japan, pp 121–129CrossRefGoogle Scholar
  20. Bruner E (2015) Human paleoneurology. Springer, SwitzerlandCrossRefGoogle Scholar
  21. Bruner E, Ripani M (2008) A quantitative and descriptive approach to morphological variation of the endocranial base in modern humans. Am J Phys Anthropol 137:30–40CrossRefGoogle Scholar
  22. Bruner E, Manzi G, Arsuaga JL (2003) Encephalization and allometric trajectories in the genus Homo: evidence from the Neandertal and modern lineages. Proc Natl Acad Sci U S A 100:15335–15340CrossRefGoogle Scholar
  23. Bruner E, Manzi G, Holloway R (2006) Krapina and Saccopastore: endocranial morphology in the pre-Wurmian Europeans. Period Biol 108:433–441Google Scholar
  24. Bruner E, Martin-Loeches M, Colom R (2010) Human midsagittal brain shape variation: patterns, allometry and integration. J Anat 216:589–599CrossRefGoogle Scholar
  25. Bruner E, De La Cuétara JM, Holloway R (2011) A bivariate approach to the variation of the parietal curvature in the genus Homo. Anat Rec 294:1548–1556CrossRefGoogle Scholar
  26. Bruner E, de la Cuétara JM, Colom R, Martin-Loeches M (2012) Gender-based differences in the shape of the human corpus callosum are associated with allometric variations. J Anat 220:417–421CrossRefGoogle Scholar
  27. Bruner E, De la Cuétara JM, Masters M, Amano H, Ogihara N (2014a) Functional craniology and brain evolution: from paleontology to biomedicine. Front Neuroanat 8:19CrossRefGoogle Scholar
  28. Bruner E, Rangel de Lázaro G, de la Cuétara JM, Martín-Loeches M, Colom R, Jacobs HIL (2014b) Midsagittal brain variation and MRI shape analysis of the precuneus in adult individuals. J Anat 224:367–376CrossRefGoogle Scholar
  29. Bruner E, Amano H, de la Cuétara JM, Ogihara N (2015a) The brain and the braincase: a spatial analysis on the midsagittal profile in adult humans. J Anat 227:268–276CrossRefGoogle Scholar
  30. Bruner E, Grimaud-Hervé D, Wu X, De la Cuétara JM, Holloway R (2015b) A paleoneurological survey of Homo erectus endocranial metrics. Quat Int 368:80–87CrossRefGoogle Scholar
  31. Bruner E, Pereira-Pedro AS, Bastir M (2017) Patterns of morphological integration between parietal and temporal areas in the human skull. J Morphol 278:1312–1320CrossRefGoogle Scholar
  32. Carter RMS, Anslow P (2009) Imaging of the calvarium. Semin Ultrasound CT MRI 30:465–491CrossRefGoogle Scholar
  33. Cheverud JM (1982) Relationships among ontogenetic, static, and evolutionary allometry. Am J Phys Anthropol 59:139–149CrossRefGoogle Scholar
  34. Collard M, Wood B (2000) How reliable are human phylogenetic hypotheses? Proc Natl Acad Sci U S A 97:5003–5006CrossRefGoogle Scholar
  35. Cotton F, Ramirez Rozzi FR, Vallee B, Pachai C, Hermier M, Guihard-Costa AM, Froment JC (2005) Cranial sutures and craniometric points detected on MRI. Surg Radiol Anat 27:64–70CrossRefGoogle Scholar
  36. Enlow DH (1990) Facial growth. Sounders, PhiladelphiaGoogle Scholar
  37. Erwin DH (2007) Disparity: morphological pattern and developmental context. Palaeontology 50:57–73CrossRefGoogle Scholar
  38. Esteve-Altava B, Rasskin-Gutman D (2014a) Beyond the functional matrix hypothesis: a network null model of human skull growth for the formation of bone articulations. J Anat 225:306–316CrossRefGoogle Scholar
  39. Esteve-Altava B, Rasskin-Gutman D (2014b) Theoretical morphology of tetrapod skull networks. C R Palevol 13:41–50CrossRefGoogle Scholar
  40. Esteve-Altava B, Marugán-Lobón J, Botella H, Bastir M, Rasskin-Gutman D (2013) Grist for Riedl’s Mill: a network model perspective on the integration and modularity of the human skull. J Exp Zool 320:489–500CrossRefGoogle Scholar
  41. Foote M (1992) Rarefaction analysis of morphological and taxonomic diversity. Paleobiology 18:1–16CrossRefGoogle Scholar
  42. Gómez-Robles A, Hopkins WD, Sherwood CC (2014) Modular structure facilitates mosaic evolution of the brain in chimpanzees and humans. Nat Commun 5:4439CrossRefGoogle Scholar
  43. Goriely A, Geers MGD, Holzapfel GA, Jayamohan J, Jérusalem A, Sivaloganathan S, Squier W, Van Dommelen JAW, Waters S, Kuhl E (2015) Mechanics of the brains: perspectives, challenges, and opportunities. Biomech Model Mechanobiol 14:931–965CrossRefGoogle Scholar
  44. Gould SJ (1966) Allometry and size in ontogeny and phylogeny. Biol Rev Camb Philos Soc 41:587–638CrossRefGoogle Scholar
  45. Gould SJ (1977) Ontogeny and phylogeny. Belknap Press, Harvard University Press, Cambridge, MAGoogle Scholar
  46. Gunz P (2015) Computed tools for paleoneurology. In: Bruner E (ed) Human paleoneurology. Springer, Cham, pp 39–55Google Scholar
  47. Gunz P, Harvati K (2007) The Neanderthal “chignon”: variation, integration, and homology. J Hum Evol 52:262–274CrossRefGoogle Scholar
  48. Gunz P, Mitterœcker P (2013) Semilandmarks: a method for quantifying curves and surfaces. Hystrix 24:103–109Google Scholar
  49. Hallgrimsson B, Lieberman DE, Liu W, Ford-Hutchinson AF, Jirik FR (2007) Epigenetic interactions and the structure of phenotypic variation in the cranium. Evol Dev 9:76–91CrossRefGoogle Scholar
  50. Hammer Ø, Ryan P, Harper D (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9Google Scholar
  51. Hetch E, Stout D (2015) Techniques for studying brain structure and function. In: Bruner E (ed) Human paleoneurology. Springer, Switzerland, pp 209–224Google Scholar
  52. Hilgetag CC, Barbas H (2005) Developmental mechanics of the primate cerebral cortex. Anat Embryol 210:411–417CrossRefGoogle Scholar
  53. Holliday TW (2003) Species concepts, reticulation, and human evolution. Curr Anthropol 44:653–673CrossRefGoogle Scholar
  54. Holloway RL (1981) Exploring the dorsal surface of hominoid brain endocasts by stereoplotter and discriminant analysis. Philos Trans R Soc Lond B 292:155–166CrossRefGoogle Scholar
  55. Holloway RL, Broadfield DC, Yuan MS (2004) Brain endocasts: the paleoneurological evidence. Wiley, HobokenGoogle Scholar
  56. Jackson DA (1993) Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74:2204–2214CrossRefGoogle Scholar
  57. Jolliffe IT (2002) Principal component analysis. Springer, New YorkGoogle Scholar
  58. Klingenberg CP (2010) Evolution and development of shape: integrating quantitative approaches. Nat Rev Genet 11:623–635Google Scholar
  59. Klingenberg CP (2013) Cranial integration and modularity: insights into evolution and development from morphometric data. Hystrix 24:43–58Google Scholar
  60. Kobayashi Y, Matsui T, Haizuka Y, Hirai N, Matsumura G (2014a) Cerebral sulci and gyri observed on macaque endocasts. In: Akazawa T, Ogihara N, Tanabe HC, Terashima H (eds) Dynamics of learning in Neanderthals and modern humans, vol 2. Springer, Japan, pp 131–137CrossRefGoogle Scholar
  61. Kobayashi Y, Matsui T, Haizuka Y, Hirai N, Matsumura G (2014b) The coronal suture as an indicator of the caudal border of the macaque monkey prefrontal cortex. In: Akazawa T, Ogihara N, Tanabe HC, Terashima H (eds) Dynamics of learning in Neanderthals and modern humans, vol 2. Springer, Japan, pp 139–143CrossRefGoogle Scholar
  62. Lawing AM, Polly PD (2010) Geometric morphometrics: recent applications to the study of evolution and development. J Zool 280:1–7CrossRefGoogle Scholar
  63. Lieberman DE, Pearson OM, Mowbray KM (2000) Basicranial influence on overall cranial shape. J Hum Evol 38:291–315CrossRefGoogle Scholar
  64. Manzi G, Vienna A, Hauser G (1996) Developmental stress and cranial hypostosis by epigenetic trait occurrence and distribution: an exploratory study on the Italian Neandertals. J Hum Evol 30:511–527CrossRefGoogle Scholar
  65. Manzi G, Gracia A, Arsuaga JL (2000) Cranial discrete traits in the Middle Pleistocene humans from Sima de los Huesos (Sierra de Atapuerca, Spain). Does hypostosis represent any increase in “ontogenetic stress” along the Neanderthal lineage? J Hum Evol 38:425–446CrossRefGoogle Scholar
  66. Martin RD, Barbour AD (1989) Aspects of line-fitting in bivariate allometric analyses. Folia Primatol 53:65–81CrossRefGoogle Scholar
  67. Masters M (2012) Relative size of the eye and orbit: an evolutionary and craniofacial constraint model for examining the etiology and disparate incidence of juvenile-onset myopia in humans. Med Hypotheses 78:649–656CrossRefGoogle Scholar
  68. Masters M, Bruner E, Queer S et al (2015) Analysis of the volumetric relationship among human ocular, orbital and fronto-occipital cortical morphology. J Anat 227:460–473CrossRefGoogle Scholar
  69. McCollum MA, Sherwood CC, Vinyard CJ et al (2006) Of muscle-bound crania and human brain evolution: the story behind the MYH16 headlines. J Hum Evol 50:232–236CrossRefGoogle Scholar
  70. McGhee GR (2007) The geometry of evolution: adaptive landscapes and theoretical morphospaces. Cambridge University Press, CambridgeGoogle Scholar
  71. Mitteroecker P, Bookstein F (2011) Linear discrimination, ordination, and the visualization of selection gradients in modern morphometrics. Evol Biol 38:100–114CrossRefGoogle Scholar
  72. Mitteroecker P, Gunz P (2009) Advances in geometric morphometrics. Evol Biol 36:235–247CrossRefGoogle Scholar
  73. Moss ML, Young RW (1960) A functional approach to craniology. Am J Phys Anthropol 18:281–292CrossRefGoogle Scholar
  74. Neubauer S (2015) Human brain evolution: ontogeny and phylogeny. In: Bruner E (ed) Human paleoneurology. Springer, Cham, pp 95–120Google Scholar
  75. Neubauer S, Gunz P, Hublin J-J (2009) The pattern of endocranial ontogenetic shape changes in humans. J Anat 215:240–255CrossRefGoogle Scholar
  76. Neubauer S, Gunz P, Weber GW, Hublin JJ (2012) Endocranial volume of Australopithecus africanus: new CT-based estimates and the effects of missing data and small sample size. J Hum Evol 62:498–510CrossRefGoogle Scholar
  77. Olson EC, Miller RL (1958) Morphological integration. University Chicago Press, ChicagoGoogle Scholar
  78. Pereira-Pedro S, Masters M, Bruner E (2017) Shape analysis of spatial relationships between orbitoocular and endocranial structures in modern humans and fossil hominids. J Anat.
  79. Plavcan JM, Cope DA (2001) Metric variation and species recognition in the fossil record. Evol Anthropol 10:204–222CrossRefGoogle Scholar
  80. Polly PD, Lawing AM, Fabre AC, Goswami A (2013) Phylogenetic principal components analysis and geometric morphometrics. Hystrix 24:33–41Google Scholar
  81. Ribas GC, Yasuda A, Ribas EC, Nishikuni K, Rodrigues AJ Jr (2006) Surgical anatomy of microneurosurgical sulcal key points. Neurosurgery 59:177–210Google Scholar
  82. Richtsmeier JT, Cheverud JM, Lele S (1992) Advances in anthropological morphometrics. Annu Rev Anthropol 21:283–305CrossRefGoogle Scholar
  83. Richtsmeier JT, DeLeon VB, Lele SR (2002) The promise of geometric morphometrics. Am J Phys Anthropol S35:63–91CrossRefGoogle Scholar
  84. Rightmire GP (1998) Evidence from facial morphology for similarity of Asian and African representatives of Homo erectus. Am J Phys Anthropol 106:61–85CrossRefGoogle Scholar
  85. Rightmire GP (2013) Homo erectus and Middle Pleistocene hominins: brain size, skull form, and species recognition. J Hum Evol 65:223–252CrossRefGoogle Scholar
  86. Rilling JK (2008) Neuroscientific approaches and applications within anthropology. Am J Phys Anthropol 137:2–32CrossRefGoogle Scholar
  87. Rohlf FJ (1999) Shape statistics: procrustes superimpositions and tangent spaces. J Classif 16:197–223CrossRefGoogle Scholar
  88. Rosas A, Peña-Melián A, García-Tabernero A, Bastir M, De La Rasilla M (2014) Temporal lobe sulcal pattern and the bony impressions in the middle cranial fossa: the case of the El Sidrón (Spain) Neandertal sample. Anat Rec 297:2331–2341CrossRefGoogle Scholar
  89. Roy K, Foote M (1997) Morphological approaches to measuring biodiversity. Trends Ecol Evol 12:277–281CrossRefGoogle Scholar
  90. Schluter D (1996) Adaptive radiation along genetic lines of least resistance. Evolution 50:1766–1774CrossRefGoogle Scholar
  91. Shea BT (1989) Heterochrony in human evolution: the case for neoteny reconsidered. Am J Phys Anthropol 32:69–101CrossRefGoogle Scholar
  92. Shea BT (1992) Developmental perspective on size change and allometry in evolution. Evol Anthropol 1:125–134CrossRefGoogle Scholar
  93. Simpson GG (1944) Tempo and mode in evolution. Columbia University Press, New YorkGoogle Scholar
  94. Slice DE (2007) Geometric morphometrics. Annu Rev Anthropol 36:261–281CrossRefGoogle Scholar
  95. Spoor F, Jeffrey N, Zonneveld F (2000) Using diagnostic radiology in human evolutionary studies. J Anat 197:61–76CrossRefGoogle Scholar
  96. Stedman HH, Kozyak BW, Nelson A, Thesier DM, Su LT, Low DW, Bridges CR, Shrager JB, Minugh-Purvis N, Mitchell MA (2004) Myosin gene mutation correlates with anatomical changes in the human lineage. Nature 428:415–418CrossRefGoogle Scholar
  97. Stringer C (2012) The status of Homo heidelbergensis (Schoetensack 1908). Evol Anthropol 21:101–107CrossRefGoogle Scholar
  98. Tallinen T, Chung JY, Rousseau F, Girard N, Lefèvre J, Mahadevan L (2016) On the growth and form of cortical convolutions. Nat Phys 12:588–593CrossRefGoogle Scholar
  99. Tattersall I (1986) Species recognition in human paleontology. J Hum Evol 15:165–175CrossRefGoogle Scholar
  100. Thompson D’A (1942) On growth and form. Cambridge University Press, CambridgeGoogle Scholar
  101. Toro R, Burnod Y (2005) A morphogenetic model for the development of cortical convolutions. Cereb Cortex 15:1900–1913CrossRefGoogle Scholar
  102. Wagner GP (1984) On the eigenvalue distribution of genetic and phenotypic dispersion matrices: evidence for a nonrandom organization of quantitative character variation. J Math Biol 21:77–95CrossRefGoogle Scholar
  103. Wagner GP, Altenberg L (1996) Complex adaptations and the evolution of evolvability. Evolution 50:967–976CrossRefGoogle Scholar
  104. Weber GW (2015) Virtual anthropology. Am J Phys Anthropol 156:22–42CrossRefGoogle Scholar
  105. Wills MA (2001) Morphological disparity: a primer. In: Adrain JM, Edgecombe GD, Lieberman BS (eds) Fossils, phylogeny, and form. Kluwer Academic, New York, pp 55–144CrossRefGoogle Scholar
  106. Wood B, Collard M (1999) The changing face of genus Homo. Evol Anthropol 8:195–207CrossRefGoogle Scholar
  107. Wu X, Bruner E (2016) The endocranial anatomy of Maba 1. Am J Phys Anthropol 160:633–643CrossRefGoogle Scholar
  108. Zelditch ML, Swidersky DL, Sheets HD, Fink WL (2004) Geometric morphometrics for biologists. Elsevier, San DiegoGoogle Scholar
  109. Zollikofer CPE, Ponce de León MS (2005) Virtual reconstruction: a primer in computer-assisted paleontology and biomedicine. Wiley-Liss, New YorkGoogle Scholar

Copyright information

© Springer Japan KK 2018

Authors and Affiliations

  1. 1.Programa de PaleobiologíaCentro Nacional de Investigación sobre la Evolución HumanaBurgosSpain

Personalised recommendations