Advertisement

The Evolution of Avian Intelligence and Sensory Capabilities: The Fossil Evidence

  • Stig A. Walsh
  • Fabien KnollEmail author
Chapter
Part of the Replacement of Neanderthals by Modern Humans Series book series (RNMH)

Abstract

Crocodiles and birds are the only living representatives of Archosauria, a once diverse clade of vertebrates that mastered terrestrial, aerial and aquatic environments during the Mesozoic. Because the braincases of archosaurs are largely ossified, the group has particularly benefited from advances in non-destructive visualisation of endocranial structures over the past two decades. Here, we focus on the neurosensory evolution in the avian lineage of the Archosauria, a group in which the Bauplan of most representatives is optimised to accommodate the functional demands of flight. Neurosensory evolution in birds included a trend towards an enlargement of the telencephalon relative to the rest of the brain, an increased vestibular system sensitivity and probably also a widening of auditory frequency range and an increased reliance on visual stimuli. Despite a relatively smooth surface, bird endocasts provide crucial information on the evolution of a critical structure, the Wulst, which underwent significant enlargement during the Cenozoic and is found with highly variable form in all extant birds. With our increasing awareness of avian cognitive capacity and neural structure, the evolution of the brain in the sauropsid lineage represents an increasingly useful comparative tool against which the development of the synapsid lineage brain of primates can be assessed. Current refinements in quantification of brain structures in extant birds are improving the reliability of the information derived from the external surface of endocasts. This, in turn, should result in a better understanding of the palaeoneurology of extinct birds and other dinosaurs.

Keywords

Bird Dinosaur Neurosensory evolution Wulst Flocculus 

Notes

Acknowledgements

We thank S. Brusatte for kindly making available images of the endocast of Steneosaurus cf. gracilirostris segmented by A. Muir (Edinburgh University) as well as R. Ridgely (Ohio University) for the digital endocast of the indeterminate Spanish lithostrotian. Two anonymous reviewers provided insightful comments. FK’s research was funded by the European Union (PIEFGA-2013-624969); SAW’s research was supported by NERC grant NE/H012176/1.

References

  1. Ali F, Zelenitsky D, Therrien F, Weishampel D (2008) Homology of the “ethmoid complex” of tyrannosaurids and its implications for the reconstruction of the olfactory apparatus of non-avian theropods. J Vertebr Paleontol 28:123–133CrossRefGoogle Scholar
  2. Balanoff AM, Bever GS, Norell MA (2014) Reconsidering the avian nature of the oviraptorosaur brain (Dinosauria: Theropoda). PLoS One 9(12):e113559CrossRefGoogle Scholar
  3. Balanoff AM, Bever GS, Rowe TB, Norell MA (2013) Evolutionary origins of the avian brain. Nature 7465:93–96CrossRefGoogle Scholar
  4. Bennett PM, Harvey PH (1985) Relative brain size and ecology in birds. J Zool 207:151–169CrossRefGoogle Scholar
  5. Bhullar BAS, Bever GS (2009) An archosaur-like laterosphenoid in early turtles (Reptilia: Pantestudines). Breviora 518:1–11CrossRefGoogle Scholar
  6. Brasier MD, Norman DB, Liu AG, Cotton LJ, Hiscocks JEH, Garwood RJ, Antcliffe JB, Wacey D (2016) Remarkable preservation of brain tissues in an early cretaceous iguanodontian dinosaur. Geol Soc Lond Spec Publ 448:SP448.3Google Scholar
  7. Brochu CA (2003) Osteology of Tyrannosaurus rex: insights from a nearly complete skeleton and high-resolution computed tomographic analysis of the skull. J Vertebr Paleontol 22(suppl 4):1–138Google Scholar
  8. Bruner E (2003) Fossil traces of human thought: palaeoneurology and the evolution of the genus. Homo J Anthropol Sci 81:29–56Google Scholar
  9. Brusatte SL, Muir A, Young MT, Walsh SA, Steel L, Witmer LM (2016) The braincase and neurosensory anatomy of an early Jurassic marine crocodylomorph: implications for crocodilian sinus evolution and sensory transitions. Anat Rec 299:1511–1530CrossRefGoogle Scholar
  10. Chatterjee S (1991) Cranial anatomy and relationships of a new Triassic bird from Texas. Philos Trans R Soc Lond B 332:277–342CrossRefGoogle Scholar
  11. Christiansen P, Fariña RA (2004) Mass prediction in theropod dinosaurs. Hist Biol 16:85–92CrossRefGoogle Scholar
  12. Clayton NS, Dally JM, Emery NJ (2007) Social cognition by food-caching corvids: the western scrub-jay as a natural psychologist. Philos Trans R Soc Lond B 362:507–522CrossRefGoogle Scholar
  13. Corfield JR, Wild JM, Hauber ME, Parsons S, Kubke MF (2008) Evolution of brain size in the Palaeognath lineage, with an emphasis on New Zealand ratites. Brain Behav Evol 71:87–99CrossRefGoogle Scholar
  14. Cuvier G (1822) Recherches sur les Ossemens fossiles, vol 3, 2nd edn. G. Dufour & E. d’Ocagne, ParisGoogle Scholar
  15. Dechaseaux C (1970) Moulages endocraniens d’oiseaux de l’Éocène Supérieur du Bassin de Paris. Ann Paléontol 56:69–72Google Scholar
  16. Domínguez Alonso P, Milner AC, Ketcham RA, Cookson MJ, Rowe TB (2004) The avian nature of the brain and inner ear of Archaeopteryx. Nature 430:666–669CrossRefGoogle Scholar
  17. Dubbeldam JL (1989) Shape and structure of the avian brain, an old problem revisited. Acta Morphol Neerl Scand 27:33–43Google Scholar
  18. Dubbeldam JL (1998) Birds. In: Nieuwenhuys R, Ten Donkelaar HJ, Nicholson C (eds) The central nervous system of vertebrates, vol 3. Springer, Berlin, pp 1525–1636CrossRefGoogle Scholar
  19. Dunning JB (2008) CRC handbook of avian body masses, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  20. Edinger T (1929) Die fossilen Gehirne. Ergeb Anat Entwicklungsgesch 28:1–249Google Scholar
  21. Elżanowski A, Galton PM (1991) Braincase of Enaliornis, an early Cretaceous bird from England. J Vertebr Paleontol 11:90–107CrossRefGoogle Scholar
  22. Emery NJ, Clayton NS (2004) The mentality of crows: convergent evolution of intelligence in corvids and apes. Science 306:1903–1907CrossRefGoogle Scholar
  23. Franzosa JW (2004) Evolution of the brain in theropoda (Dinosauria). PhD dissertation, The University of Texas at Austin, AustinGoogle Scholar
  24. Fuchs R, Winkler H, Bingman VP, Ross JD, Bernroider G (2014) Brain geometry and its relation to migratory behavior in birds. J Adv Neuro Res 1:1–9CrossRefGoogle Scholar
  25. Gratiolet P (1858) Sur l’encéphale du Caïnotherium commune, Brav. Extraits p v séances, Soc philom Paris 23:19–23Google Scholar
  26. Hall MI, Iwaniuk AN, Gutiérrez-Ibáñez C (2009) Optic foramen morphology and activity pattern in birds. Anat Rec 292:1827–1845CrossRefGoogle Scholar
  27. Hoch E (1975) Amniote remnants from the eastern part of the lower Eocene North Sea basin. Colloq Int CNRS 218:543–562Google Scholar
  28. Hunt G, Gray RD (2007) Parallel tool industries in New Caledonian crows. Biol Lett 3:173–175CrossRefGoogle Scholar
  29. Hurlburt GR, Ridgely RC, Witmer LM (2013) Relative size of brain and cerebrum in tyrannosaurid dinosaurs: an analysis using brain-endocast quantitative relationships in extant alligators. In: Parrish JM, Molnar RE, Currie PJ, Koppelhus EB (eds) Tyrannosaurid paleobiology. Indiana University Press, Bloomington, pp 134–155Google Scholar
  30. Isler K, van Schaik C (2006) Costs of encephalisation: the energy trade-off hypothesis tested on birds. J Hum Evol 51:228–243CrossRefGoogle Scholar
  31. Iwaniuk AN, Heesy CP, Hall MI, Wylie DRW (2008) Relative Wulst volume is correlated with orbit orientation and binocular visual field in birds. J Comp Physiol A 194:267–282CrossRefGoogle Scholar
  32. Iwaniuk AN, Hurd PL (2005) The evolution of cerebrotypes in birds. Brain Behav Evol 65:215–230CrossRefGoogle Scholar
  33. Iwaniuk AN, Nelson J (2002) Can endocranial volume be used as an estimate of brain size in birds? Can J Zool 80:16–23CrossRefGoogle Scholar
  34. Iwaniuk AN, Nelson JE, James HF, Olson SL (2004) A comparative test of the correlated evolution of flightlessness and relative brain size in birds. J Zool 263:317–327CrossRefGoogle Scholar
  35. Jarvis ED, Güntürkün O, Bruce L, Csillag A, Karten H, Kuenzel W, Medina L, Paxinos G, Perkel DJ, Shimizu T, Striedter G, Wild JM, Ball GF, Dugas-Ford J, Durand SE, Hough GE, Husband S, Kubikova L, Lee DW, Mello CV, Powers A, Siang C, Smulders TV, Wada K, White SA, Yamamoto K, Yu J, Reiner A, Butler AB (2005) Avian brains and a new understanding of vertebrate brain evolution. Nat Rev Neurosci 6:151–159CrossRefGoogle Scholar
  36. Jerison HJ (1973) Evolution of the brain and intelligence. Academic, LondonGoogle Scholar
  37. Kawabe S, Shimokawa T, Miki H, Matsuda S, Endo H (2013) Variation in avian brain shape: relationship with size and orbital shape. J Anat 223:495–508Google Scholar
  38. Knoll F (1997) La boîte crânienne d’un théropode (Saurischia) du Jurassique des Vaches Noires: ostéologie et paléoneurologie. DEA dissertation, Université des Sciences et Techniques du Languedoc, MontpellierGoogle Scholar
  39. Knoll F, Buffetaut E, Bülow M (1999) A theropod braincase from the Jurassic of the Vaches Noires cliffs (Normandy, France): osteology and palaeoneurology. Bull Soc Géol Fr 170:103–109Google Scholar
  40. Knoll F, Witmer LM, Ortega F, Ridgely RC, Schwarz-Wings D (2012) The braincase of the basal sauropod dinosaur Spinophorosaurus and 3D reconstructions of the cranial endocast and inner ear. PLoS One 7(1):e30060CrossRefGoogle Scholar
  41. Knoll F, Witmer LM, Ridgely RC, Ortega F, Sanz JL (2015) A new titanosaurian braincase from the cretaceous “Lo Hueco” locality in Spain sheds light on neuroanatomical evolution within Titanosauria. PLoS One 10(10):e0138233CrossRefGoogle Scholar
  42. Ksepka DT, Balanoff AM, Walsh S, Revan A, Ho A (2012) Evolution of the brain and sensory organs in Sphenisciformes: new data from the stem penguin Paraptenodytes antarcticus. Zool J Linnean Soc 166:202–219Google Scholar
  43. Kundrát M (2007) Avian-like attributes of a virtual brain model of the oviraptorid theropod Conchoraptor gracilis. Naturwissenschaften 94:499–504CrossRefGoogle Scholar
  44. Lefebvre L, Reader SM, Sol D (2004) Brains, innovations and evolution in birds and primates. Brain Behav Evol 63:233–246CrossRefGoogle Scholar
  45. Marsh OC (1884) Principal characters of American Jurassic dinosaurs: part VIII. Am J Sci 27:329–340CrossRefGoogle Scholar
  46. Marsh OC (1886) Dinocerata. Monogr US Geol Surv 10:1–243Google Scholar
  47. Martin GR (1985) Eye. In: King AS, McLelland J (eds) Form and function in birds. Academic, New York, pp 311–373Google Scholar
  48. Martin GR (2009) What is binocular vision for?: a birds’ eye view. J Vis 9:1–19CrossRefGoogle Scholar
  49. Mehlhorn J, Hunt GR, Gray RD, Rehkämper G, Güntürkün O (2010) Tool-making new Caledonian crows have large associative brain areas. Brain Behav Evol 75:63–70CrossRefGoogle Scholar
  50. Milner AC, Walsh SA (2009) Avian brain evolution: new data from Palaeogene birds (Lower Eocene) from England. Zool J Linnean Soc 155:198–219CrossRefGoogle Scholar
  51. Mlíkovský J (1980) Zwei Vogelgehirne aus dem Miozän Böhmens. Čas Miner Geol 25:409–413Google Scholar
  52. Mouritsen H, Feenders G, Liedvogel M, Wada K, Jarvis ED (2005) Night-vision brain area in migratory songbirds. Proc Natl Acad Sci U S A 102:8339–8344CrossRefGoogle Scholar
  53. Oken L (1819) Pterodactylus longi- et brevirostris. Isis 2:1788–1798Google Scholar
  54. Olkowicz S, Kocourek M, Lučan RK, Porteš M, Fitch WT, Herculano-Houzel S, Němec P (2016) Birds have primate-like numbers of neurons in the forebrain. Proc Natl Acad Sci U S A 113:7255–7260CrossRefGoogle Scholar
  55. Osmólska H (2004) Evidence on relation of brain to endocranial cavity in oviraptorid dinosaurs. Acta Palaeontol Pol 49:321–324Google Scholar
  56. Owen R (1842) Report on British fossil reptiles: Pt II. Rep Brit Assoc Adv Sci 11:60–204Google Scholar
  57. Owen R (1871) On Dinornis (Part XVI.): containing notices of the internal organs of some species, with a description of the brain and some nerves and muscles of the head of the Apteryx australis. Trans Zool Soc Lond 7:381–396CrossRefGoogle Scholar
  58. Owen R (1879) Memoirs on the extinct wingless birds of New Zealand, with an appendix on those of England, Australia, Newfoundland, Mauritius, and Rodriguez, vol 2. J van Voorst, LondonGoogle Scholar
  59. Pearson R (1972) The avian brain. Academic, LondonGoogle Scholar
  60. Petkov CI, Jarvis ED (2012) Birds, primates, and spoken language origins: behavioural phenotypes and neurobiological substrates. Front Evol Neurosci 4:1–24CrossRefGoogle Scholar
  61. Picasso MBJ, Tambussi C, Dozo MT (2009) Neurocranial and brain anatomy of a late Miocene eagle (Aves, Accipitridae) from Patagonia. J Vertebr Paleontol 29:831–836CrossRefGoogle Scholar
  62. Portmann A, Stingelin W (1961) The central nervous system. In: Marshall AJ (ed) The biology and comparative physiology of birds, vol 2. Academic, New York, pp 1–36Google Scholar
  63. Pradel A, Langer M, Maisey JG, Geffard-Kuriyama D, Cloetens P, Janvier P, Tafforeau P (2009) Skull and brain of a 300-million-year-old chimaeroid fish revealed by synchrotron holotomography. Proc Natl Acad Sci U S A 106:5224–5228CrossRefGoogle Scholar
  64. Prior H, Schwarz A, Güntürkün O (2008) Mirror-induced behaviour in the magpie (Pica pica): evidence of self-recognition. PLoS Biol 6(8):e202CrossRefGoogle Scholar
  65. Proffitt JV, Clarke JA, Scofield RP (2016) Novel insights into early neuroanatomical evolution in penguins from the oldest described penguin brain endocast. J Anat 229:228–238CrossRefGoogle Scholar
  66. Reiner A (2009) Avian evolution: from Darwin’s finches to a new way of thinking about avian forebrain organization and behavioural capabilities. Biol Lett 5:122–124CrossRefGoogle Scholar
  67. Reiner A, Yamamoto K, Karten HJ (2005) Organization and evolution of the avian forebrain. Anat Rec A 287:1080–1102CrossRefGoogle Scholar
  68. Salzen EA, Parker DM (1975) Arousal and orientation functions of the avian telencephalon. In: Wright P, Caryl PG, Vowles DM (eds) Neural and endocrine aspects of behavior in birds. Elsevier, Amsterdam, pp 205–242Google Scholar
  69. Sobral G, Sookias RB, Bhullar BAS, Smith R, Butler RJ, Müller J (2016) New information on the braincase and inner ear of Euparkeria capensis broom: implications for diapsid and archosaur evolution. R Soc Open Sci 3:160072CrossRefGoogle Scholar
  70. Stingelin W (1957) Vergleichend morphologische untersuchungen am Vorderhirn der Vögel auf cytologischer und cytoarchitektonischer Grundlage. Helbing and Lichtenhahn, BaselGoogle Scholar
  71. Tambussi CP, Degrange FJ, Ksepka DT (2015) Endocranial anatomy of Antarctic Eocene stem penguins: implications for sensory system evolution in Sphenisciformes (Aves). J Vertebr Paleontol 35:e981635CrossRefGoogle Scholar
  72. Tebbich S, Taborsky M, Fessl B, Blomqvist M (2001) Do woodpecker finches acquire tool-use by social learning? Proc R Soc Lond B 268:2189–2193CrossRefGoogle Scholar
  73. Walsh SA, Iwaniuk AN, Knoll MA, Bourdon E, Barrett PM, Milner AC, Nudds R, Abel RL, Dello Sterpaio P (2013) Avian cerebellar floccular fossa size is not a proxy for flying ability in birds. PLoS One 8(6):e67176CrossRefGoogle Scholar
  74. Walsh SA, Knoll MA (2011) Directions in palaeoneurology. Spec Pap Palaeontol 86:263–279Google Scholar
  75. Walsh SA, Milner AC (2011a) Evolution of the avian brain and senses. In: Dyke G, Kaiser G (eds) Living dinosaurs: the evolutionary history of modern birds. Wiley, Chichester, pp 282–305CrossRefGoogle Scholar
  76. Walsh SA, Milner AC (2011b) Halcyornis toliapicus (Aves: Lower Eocene, England) indicates advanced neuromorphology in Mesozoic Neornithes. J Syst Palaeontol 9:173–181CrossRefGoogle Scholar
  77. Walsh SA, Milner AC, Bourdon E (2016) A reappraisal of Cerebavis cenomanica (Aves, Ornithurae), from Melovatka, Russia. J Anat 229:215–227CrossRefGoogle Scholar
  78. Walsh SA, Zhe-Xi L, Barrett P (2014) Modern imaging techniques as a window to prehistoric auditory worlds. In: Köppl C, Manley G (eds) Insights from comparative hearing research. Springer, New York, pp 227–261Google Scholar
  79. Witmer LM, Chatterjee S, Franzosa J, Rowe T (2003) Neuroanatomy of flying reptiles and implications for flight, posture and behavior. Nature 425:950–953CrossRefGoogle Scholar
  80. Witmer LM, Ridgely RC (2007) Evolving an on-board flight computer: brains, ears, and exaptation in the evolution of birds and other theropod dinosaurs. J Morphol 268:1150Google Scholar
  81. Witmer LM, Ridgely RC, Dufeau DL, Semones MC (2008) Using CT to peer into the past: 3D visualisation of the brain and ear regions of birds, crocodiles and nonavian dinosaurs. In: Endo H, Frey R (eds) Anatomical imaging: towards a new morphology. Springer, Tokyo, pp 67–87CrossRefGoogle Scholar
  82. Yosef R, Yosef N (2010) Cooperative hunting in brown-necked raven (Corvus rufficollis) on Egyptian mastigure (Uromastyx aegyptius). J Ethol 28:385–388CrossRefGoogle Scholar
  83. Zhou Z (2004) The origin and early evolution of birds: discoveries, disputes, and perspectives from fossil evidence. Naturwissenschaften 91:455–471CrossRefGoogle Scholar

Copyright information

© Springer Japan KK 2018

Authors and Affiliations

  1. 1.Department of Natural SciencesNational Museums ScotlandEdinburghUK
  2. 2.Fundación Conjunto Paleontológico de Teruel-DinópolisTeruelSpain
  3. 3.School of Earth and Environmental SciencesUniversity of ManchesterManchesterUK

Personalised recommendations