Evolution of the Occipital Lobe

  • Orlin S. Todorov
  • Alexandra A. de SousaEmail author
Part of the Replacement of Neanderthals by Modern Humans Series book series (RNMH)


In this chapter, we review and summarize the current body of knowledge on the anatomy, function, and evolution of the occipital lobes in humans, with reference to the brains of other key species. The anatomical landmarks that can be used to delineate the occipital lobe have been defined and explored in detail, and its functional significance in regard to visual processing has been elucidated. We give an overview of the current understanding about the evolution of the occipital lobe in primates from comparative perspective and present findings related to cortical reorganization, reduction, folding, and gyrification in the primate lineage over evolutionary time. Implications for further directions of inquiry that might shed light on less clear issues are also suggested.


Occipital lobe Human evolution Vision Paleoneurology Comparative psychology Neuroanatomy 



This review is based in part on work done in partial completion of a PhD by Alexandra de Sousa at the George Washington University.


  1. Albright TD, Desimone R, Gross CG (1984) Columnar organization of directionally selective cells in visual area MT of the macaque. J Neurophysiol 51:16–31CrossRefGoogle Scholar
  2. Allen JS, Damasio H, Grabowski TJ (2002) Normal neuroanatomical variation in the human brain: an MRI-volumetric study. Am J Phys Anthropol 118:341–358CrossRefGoogle Scholar
  3. Allen JS, Bruss J, Damasio H (2006) Looking for the lunate sulcus: a magnetic resonance imaging study in modern humans. Anat Rec (Hoboken) 288:867–876CrossRefGoogle Scholar
  4. Amunts K, Zilles K (2015) Architectonic mapping of the human brain beyond Brodmann. Neuron 88:1086–1107CrossRefGoogle Scholar
  5. Amunts K, Malikovic A, Mohlberg H, Schormann T, Zilles K (2000) Brodmann’s areas 17 and 18 brought into stereotaxic space-where and how variable? NeuroImage 11:66–84CrossRefGoogle Scholar
  6. Andrews TJ, Halpern SD, Purves D (1997) Correlated size variations in human visual cortex, lateral geniculate nucleus, and optic tract. J Neurosci 17:2859–2868Google Scholar
  7. Annese J, Pitiot A, Dinov ID, Toga AW (2004) A myelo-architectonic method for the structural classification of cortical areas. NeuroImage 21:15–26CrossRefGoogle Scholar
  8. Annese J, Gazzaniga MS, Toga AW (2005) Localization of the human cortical visual area MT based on computer aided histological analysis. Cereb Cortex 15:1044–1053CrossRefGoogle Scholar
  9. Armstrong E, Zilles K, Curtis M, Schleicher A (1991) Cortical folding, the lunate sulcus and the evolution of the human brain. J Hum Evol 20:341CrossRefGoogle Scholar
  10. Bailey P, Von Bonin G (1951) The Isocortex of man. University of Illinois Press, UrbanaGoogle Scholar
  11. Bailey P, Von Bonin G, McCulloch WS (1950) The isocortex of chimpanzee. University of Illinois Press, UrbanaGoogle Scholar
  12. Balzeau A, Gilissen E, Grimaud-Herve D (2012) Shared pattern of endocranial shape asymmetries among great apes, anatomically modern humans, and fossil hominins. PLoS One 7:e29581CrossRefGoogle Scholar
  13. Barton RA (2007) Evolutionary specialization in mammalian cortical structure. J Evol Biol 20:1504–1511CrossRefGoogle Scholar
  14. Barton RA, Harvey PH (2000) Mosaic evolution of brain structure in mammals. Nature 405:1055–1058CrossRefGoogle Scholar
  15. Bishop KM, Goudreau G, O’leary DD (2000) Regulation of area identity in the mammalian neocortex by Emx2 and Pax6. Science 288:344–349CrossRefGoogle Scholar
  16. Braak H (1977) The pigment architecture of the human occipital lobe. Anat Embryol (Berl) 150:229–250CrossRefGoogle Scholar
  17. Breitmeyer BG (2014) Contributions of magno- and parvocellular channels to conscious and non-conscious vision. Philos Trans R Soc Lond Ser B Biol Sci 369:20130213CrossRefGoogle Scholar
  18. Bridge H, Clare S, Jenkinson M, Jezzard P, Parker AJ, Matthews PM (2005) Independent anatomical and functional measures of the V1/V2 boundary in human visual cortex. J Vis 5:93–102CrossRefGoogle Scholar
  19. Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth, LeipzigGoogle Scholar
  20. Brodmann K (1925) Vergleiehende Lokalisationslehre der Grosshirnrinde. J. A. Barth, LeipzigGoogle Scholar
  21. Bruner E, Lozano M, Lorenzo C (2016) Visuospatial integration and human evolution: the fossil evidence. J Anthropol Sci 94:81–97Google Scholar
  22. Campbell MJ, Morrison JH (1989) Monoclonal antibody to neurofilament protein (SMI-32) labels a subpopulation of pyramidal neurons in the human and monkey neocortex. J Comp Neurol 282:191–205CrossRefGoogle Scholar
  23. Clarke S (1993) Callosal connections and functional subdivision of the human occipital cortex. In: Gulyas B, Ottoson D, Roland PE (eds) Functional organization of the human visual cortex, 1st edn. Perhamon Press, OxfordGoogle Scholar
  24. Clarke S, Miklossy J (1990) Occipital cortex in man: organization of callosal connections, related myelo- and cytoarchitecture, and putative boundaries of functional visual areas. J Comp Neurol 298:188–214CrossRefGoogle Scholar
  25. Conroy GC, Smith RJ (2007) The size of scalable brain components in the human evolutionary lineage: with a comment on the paradox of Homo floresiensis. HOMO – J Comp Hum Biol 58:1–12CrossRefGoogle Scholar
  26. Coogan TA, Burkhalter A (1993) Hierarchical organization of areas in rat visual cortex. J Neurosci 13:3749–3772Google Scholar
  27. Cragg BG (1967) The density of synapses and neurones in the motor and visual areas of the cerebral cortex. J Anat 101:639–654Google Scholar
  28. Daniel PM, Whitteridge D (1961) The representation of the visual field on the cerebral cortex in monkeys. J Physiol 159:203–221CrossRefGoogle Scholar
  29. De Juan Romero C, Bruder C, Tomasello U, Sanz-Anquela JM, Borrell V (2015) Discrete domains of gene expression in germinal layers distinguish the development of gyrencephaly. EMBO J 34:1859–1874CrossRefGoogle Scholar
  30. De Sousa AA, Sherwood CC, Mohlberg H, Amunts K, Schleicher A, Macleod CE, Hof PR, Frahm H, Zilles K (2010a) Hominoid visual brain structure volumes and the position of the lunate sulcus. J Hum Evol 58:281–292CrossRefGoogle Scholar
  31. De Sousa AA, Sherwood CC, Schleicher A, Amunts K, Macleod CE, Hof PR, Zilles K (2010b) Comparative cytoarchitectural analyses of striate and extrastriate areas in hominoids. Cereb Cortex 20:966–981CrossRefGoogle Scholar
  32. De Sousa AA, Sherwood CC, Hof PR, Zilles K (2013) Lamination of the lateral geniculate nucleus of catarrhine primates. Brain Behav Evol 81:93–108CrossRefGoogle Scholar
  33. Dehay C, Giroud P, Berland M, Killackey H, Kennedy H (1996) Contribution of thalamic input to the specification of cytoarchitectonic cortical fields in the primate: effects of bilateral enucleation in the fetal monkey on the boundaries, dimensions, and gyrification of striate and extrastriate cortex. J Comp Neurol 367:70–89CrossRefGoogle Scholar
  34. Deyoe EA, Van Essen DC (1988) Concurrent processing streams in monkey visual cortex. Trends Neurosci 11:219–226CrossRefGoogle Scholar
  35. Deyoe EA, Hockfield S, Garren H, Van Essen DC (1990) Antibody labeling of functional subdivisions in visual cortex: cat-301 immunoreactivity in striate and extrastriate cortex of the macaque monkey. Vis Neurosci 5:67–81CrossRefGoogle Scholar
  36. Deyoe EA, Felleman DJ, Van Essen DC, McClendon E (1994) Multiple processing streams in occipitotemporal visual cortex. Nature 371:151–154CrossRefGoogle Scholar
  37. Deyoe EA, Carman GJ, Bandettini P, Glickman S, Wieser J, Cox R, Miller D, Neitz J (1996) Mapping striate and extrastriate visual areas in human cerebral cortex. Proc Natl Acad Sci U S A 93:2382–2386CrossRefGoogle Scholar
  38. Dominy NJ, Lucas PW (2001) Ecological importance of trichromatic vision to primates. Nature 410:363–366CrossRefGoogle Scholar
  39. Fagot J, Deruelle C (1997) Processing of global and local visual information and hemispheric specialization in humans (Homo sapiens) and baboons (Papio papio). J Exp Psychol Hum Percept Perform 23:429–442CrossRefGoogle Scholar
  40. Fagot J, Tomonaga M, Deruelle C (2001) Processing of the global and local dimensions of visual hierarchical stimuli by humans (Homo sapiens), chimpanzees (Pan troglodytes), and baboons (Papio papio). In: Matsuzawa T (ed) Primate origins of human cognition and behavior. Springer, New YorkGoogle Scholar
  41. Felleman DJ, Van Essen DC (1987) Receptive field properties of neurons in area V3 of macaque monkey extrastriate cortex. J Neurophysiol 57:889–920CrossRefGoogle Scholar
  42. Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47CrossRefGoogle Scholar
  43. Ferrera VP, Nealey TA, Maunsell JH (1994) Responses in macaque visual area V4 following inactivation of the parvocellular and magnocellular LGN pathways. J Neurosci 14:2080–2088Google Scholar
  44. Filimonoff IN (1932) Über die Variabilität der Großhirnrindenstruktur. Mitteilung II Regio occipitalis beim erwachsenen Menschen. J Psychol Neurol 44:1–96Google Scholar
  45. Filimonoff IN (1933a) Über die Variabilität der Großhirnrindenstruktur. Mitteilung III Regio occipitalis bei der höheren und niederen Affen. J Psychol Neurol 45:69–137Google Scholar
  46. Filimonoff IN (1933b) Über die Variabilität der Großhirnrindenstruktur. Mitteilung III Regio occipitalis bei der höheren und niederen Affen. J Psychol Neurol 45:69–137Google Scholar
  47. Finlay BL, Darlington RB, Nicastro N (2001) Developmental structure in brain evolution. Behav Brain Sci 24:263–278. discussion 278–308CrossRefGoogle Scholar
  48. Fukuda K, Saito N, Yamamoto M, Tanaka C (1994) Immunocytochemical localization of the alpha-, beta I-, beta II- and gamma-subspecies of protein kinase C in the monkey visual pathway. Brain Res 658:155–162CrossRefGoogle Scholar
  49. Gattass R, Rosa MG, Sousa AP, Pinon MC, Fiorani Junior M, Neuenschwander S (1990) Cortical streams of visual information processing in primates. Braz J Med Biol Res 23:375–393Google Scholar
  50. Gerhardt E (1940) Die Cytoarchitektonik des Isocortex parietalis beim Menschen. J Psychol Neurol 49:367–419Google Scholar
  51. Ghazanfar AA, Santos LR (2004) Primate brains in the wild: the sensory bases for social interactions. Nat Rev Neurosci 5:603–616CrossRefGoogle Scholar
  52. Glaser JS (2008) Romancing the chiasm: vision, vocalization, and virtuosity. J Neuroophthalmol 28:131–143CrossRefGoogle Scholar
  53. Glickstein M, Rizzolatti G (1984) Francesco Gennari and the structure of the cerebral cortex. Trends Neurosci 7:464–467CrossRefGoogle Scholar
  54. Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25CrossRefGoogle Scholar
  55. Goodchild AK, Martin PR (1998) The distribution of calcium-binding proteins in the lateral geniculate nucleus and visual cortex of a New World monkey, the marmoset, Callithrix jacchus. Vis Neurosci 15:625–642CrossRefGoogle Scholar
  56. Gratiolet PL (1854) Mémoire sur les plis cérébraux de l’homme et des primates. A. Bertrand, ParisGoogle Scholar
  57. Haab O (1882) Ueber cortex – Hemianopie. Monatsbl f Augenhlkde 20:141–153Google Scholar
  58. Hanazawa A, Komatsu H (2001) Influence of the direction of elemental luminance gradients on the responses of V4 cells to textured surfaces. J Neurosci 21:4490–4497Google Scholar
  59. Hendry SH, Yoshioka T (1994) A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus. Science 264:575–577CrossRefGoogle Scholar
  60. Herculano-Houzel S, Collins CE, Wong PY, Kaas JH (2007) Cellular scaling rules for primate brains. Proc Nat Acad Sci U S Am 104:3562–3567CrossRefGoogle Scholar
  61. Hof, PR (2000) Neurochemical and cellular specializations in the mammalian neocortex reflect phylogenetic relationships: evidence from primates, cetaceans, and artiodactyls. Brain Behav Evol 300Google Scholar
  62. Hof PR, Morrison JH (1990) Quantitative analysis of a vulnerable subset of pyramidal neurons in Alzheimer’s disease: II. Primary and secondary visual cortex. J Comp Neurol 301:55–64CrossRefGoogle Scholar
  63. Hof PR, Morrison JH (1995) Neurofilament protein defines regional patterns of cortical organization in the macaque monkey visual system: a quantitative immunohistochemical analysis. J Comp Neurol 352:161–186CrossRefGoogle Scholar
  64. Hof PR, Ungerleider LG, Webster MJ, Gattass R, Adams MM, Sailstad CA, Morrison JH (1996) Neurofilament protein is differentially distributed in subpopulations of corticocortical projection neurons in the macaque monkey visual pathways. J Comp Neurol 376:112–127CrossRefGoogle Scholar
  65. Holloway RL (1966) Cranial capacity, neural reorganization, and hominid evolution – search for more suitable parameters. Am Anthropol 68:103–121CrossRefGoogle Scholar
  66. Holloway RL (1968) The evolution of the primate brain: some aspects of quantitative relations. Brain Res 7:121–172CrossRefGoogle Scholar
  67. Holloway RL (1992) The failure of the Gyrification index (Gi) to account for volumetric reorganization in the evolution of the human brain. J Hum Evol 22:163–170CrossRefGoogle Scholar
  68. Holloway RL, De Lacoste-lareymondie MC (1982) Brain endocast asymmetry in pongids and hominids: some preliminary findings on the paleontology of cerebral dominance. Am J Phys Anthropol 58:101–110CrossRefGoogle Scholar
  69. Holloway RL, Broadfield DC, Yuan MS (2003) Morphology and histology of chimpanzee primary visual striate cortex indicate that brain reorganization predated brain expansion in early hominid evolution. Anat Rec 273A:594–602CrossRefGoogle Scholar
  70. Holmes G (1918) Disturbances of vision by cerebral lesions. Br J Ophthalmol 2:353–384CrossRefGoogle Scholar
  71. Hopkins WD, Marino L (2000) Asymmetries in cerebral width in nonhuman primate brains as revealed by magnetic resonance imaging (MRI). Neuropsychologia 38:493–499CrossRefGoogle Scholar
  72. Horel JA (1994) Local and global perception examined by reversible suppression of temporal cortex with cold. Behav Brain Res 65:157–164CrossRefGoogle Scholar
  73. Horton JC, Hoyt WF (1991) The representation of the visual field in human striate cortex. A revision of the classic Holmes map. Arch Ophthalmol 109:816–824CrossRefGoogle Scholar
  74. Hubel DH, Wiesel TN (1959) Receptive fields of single neurones in the cat’s striate cortex. J Physiol 148:574–591CrossRefGoogle Scholar
  75. Hubel DH, Wiesel TN (1968) Receptive fields and functional architecture of monkey striate cortex. J Physiol 195:215–243CrossRefGoogle Scholar
  76. Hughes A, Vaney DI (1982) The organization of binocular cortex in the primary visual area of the rabbit. J Comp Neurol 204:151–164CrossRefGoogle Scholar
  77. Humphrey GK, Goodale MA, Bowen CV, Gati JS, Vilis T, Rutt BK, Menon RS (1997) Differences in perceived shape from shading correlate with activity in early visual areas. Curr Biol 7:144–147CrossRefGoogle Scholar
  78. Inouye T (1909) Die Sehstörungen bei Schussverletzungen der kortikalen Sehsphäre: nach Beobachtungen an Verwundeten der letzten japanischen Kriege. W. Engelmann, LeipzigGoogle Scholar
  79. Jerison HJ (1975) Fossil evidence of evolution of the human brain. Annu Rev Anthropol 4:27–58CrossRefGoogle Scholar
  80. Jones EG, Hendry SH (1989) Differential calcium binding protein immunoreactivity distinguishes classes of relay neurons in monkey thalamic nuclei. Eur J Neurosci 1:222–246CrossRefGoogle Scholar
  81. Kaas JH (1993) The organization of visual cortex in primates: problems, conclusions, and the use of comparative studies in understanding brain evolution. In: Gulyas B, Ottoson D, Roland PE (eds) Functional organization of the human visual cortex, 1st edn. Perhamon Press, OxfordGoogle Scholar
  82. Kaas JH (2006) The evolution of visual cortex in primates. In: Kremers J (ed) The primate visual system. John Wiley & Sons, Ltd., Chichester, UK, pp 267–283CrossRefGoogle Scholar
  83. Karlen SJ, Krubitzer L (2009) Effects of bilateral enucleation on the size of visual and nonvisual areas of the brain. Cereb Cortex 19:1360–1371CrossRefGoogle Scholar
  84. Kourtzi Z, Tolias AS, Altmann CF, Augath M, Logothetis NK (2003) Integration of local features into global shapes: monkey and human FMRI studies. Neuron 37:333–346CrossRefGoogle Scholar
  85. Kravitz DJ, Saleem KS, Baker CI, Mishkin M (2011) A new neural framework for visuospatial processing. Nat Rev Neurosci 12:217–230CrossRefGoogle Scholar
  86. Krubitzer L, Campi KL, Cooke DF (2011) All rodents are not the same: a modern synthesis of cortical organization. Brain Behav Evol 78:51–93CrossRefGoogle Scholar
  87. Kuffler SW (1953) Discharge patterns and functional organization of mammalian retina. J Neurophysiol 16:37–68CrossRefGoogle Scholar
  88. Kujovic M, Zilles K, Malikovic A, Schleicher A, Mohlberg H, Rottschy C, Eickhoff SB, Amunts K (2013) Cytoarchitectonic mapping of the human dorsal extrastriate cortex. Brain Struct Funct 218:157–172CrossRefGoogle Scholar
  89. Lacoste-Royal G, Mathieu M, Nalbantoglu J, Julien JP, Gauthier S, Gauvreau D (1990) Lack of association between two restriction fragment length polymorphisms in the genes for the light and heavy neurofilament proteins and Alzheimer’s disease. Can J Neurol Sci 17:302–305CrossRefGoogle Scholar
  90. Lashley KS, Clark G (1946) The cytoarchitecture of the cerebral cortex of Ateles – a critical examination of architectonic studies. J Comp Neurol 85:223–305CrossRefGoogle Scholar
  91. Le May M (1976) Morphological cerebral asymmetries of modern man, fossil man and nonhuman primates. Ann N Y Acad Sci 280:349–366CrossRefGoogle Scholar
  92. Le May M, Billig MS, Geschwind N (1982) Asymmetries in the brains and skulls of nonhuman primates. In: Armstrong E, Falk D (eds) Primate brain evolution: methods and concepts. Plenum Press, New YorkGoogle Scholar
  93. Leventhal AG, Rodieck RW, Dreher B (1981) Retinal ganglion cell classes in the old world monkey: morphology and central projections. Science 213:1139–1142CrossRefGoogle Scholar
  94. Livingstone M, Hubel D (1988) Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science 240:740–749CrossRefGoogle Scholar
  95. Lucas PW, Darvell BW, Lee PK, Yuen TD, Choong MF (1998) Colour cues for leaf food selection by long-tailed macaques (Macaca fascicularis) with a new suggestion for the evolution of trichromatic colour vision. Folia Primatol (Basel) 69:139–152CrossRefGoogle Scholar
  96. Lucas PW, Dominy NJ, Riba-Hernandez P, Stoner KE, Yamashita N, Loria-Calderon E, Petersen-Pereira W, Rojas-Duran Y, Salas-Pena R, Solis-Madrigal S, Osorio D, Darvell BW (2003) Evolution and function of routine trichromatic vision in primates. Evolution Int J Org Evolution 57:2636–2643CrossRefGoogle Scholar
  97. Lueck CJ, Zeki S, Friston KJ, Deiber MP, Cope P, Cunningham VJ, Lammertsma AA, Kennard C, Frackowiak RS (1989) The colour centre in the cerebral cortex of man. Nature 340:386–389CrossRefGoogle Scholar
  98. Lyon DC, Kaas JH (2002) Evidence for a modified V3 with dorsal and ventral halves in macaque monkeys. Neuron 33:453–461CrossRefGoogle Scholar
  99. Malikovic A, Amunts K, Schleicher A, Mohlberg H, Eickhoff SB, Wilms M, Palomero-Gallagher N, Armstrong E, Zilles K (2007) Cytoarchitectonic analysis of the human extrastriate cortex in the region of V5/MT+: a probabilistic, stereotaxic map of area hOc5. Cereb Cortex 17:562–574CrossRefGoogle Scholar
  100. Malikovic A, Vucetic B, Milisavljevic M, Tosevski J, Sazdanovic P, Milojevic B, Malobabic S (2012) Occipital sulci of the human brain: variability and morphometry. Anat Sci Int 87:61–70CrossRefGoogle Scholar
  101. Malikovic A, Amunts K, Schleicher A, Mohlberg H, Kujovic M, Palomero-gallagher N, Eickhoff SB, Zilles K (2016) Cytoarchitecture of the human lateral occipital cortex: mapping of two extrastriate areas hOc4la and hOc4lp. Brain Struct Funct 221:1877–1897CrossRefGoogle Scholar
  102. McDaniel WF, Wall TT (2013) Visuospatial functions in the rat following injuries to striate, peristriate, and parietal neocortical sites. Psychobiology 16:251–260Google Scholar
  103. McKeefry DJ, Zeki S (1997) The position and topography of the human colour centre as revealed by functional magnetic resonance imaging. Brain 120(Pt 12):2229–2242CrossRefGoogle Scholar
  104. Nassi JJ, Callaway EM (2009) Parallel processing strategies of the primate visual system. Nat Rev Neurosci 10:360–372CrossRefGoogle Scholar
  105. Newton I (1966) Opticks: or a treatise of the reflexions, refractions, inflexions and colours of light. Also two treatises of the species and magnitude of curvilinear figures. Sam. Smith and Benj. Walford, London. 1704, Culture et civilisationGoogle Scholar
  106. Nonaka-Kinoshita M, Reillo I, Artegiani B, Martinez-Martinez MA, Nelson M, Borrell V, Calegari F (2013) Regulation of cerebral cortex size and folding by expansion of basal progenitors. EMBO J 32:1817–1828CrossRefGoogle Scholar
  107. Orban GA, Van Essen D, Van Duffel W (2004) Comparative mapping of higher visual areas in monkeys and humans. Trends Cogn Sci 8:315–324CrossRefGoogle Scholar
  108. Pasupathy A, Connor CE (2002) Population coding of shape in area V4. Nat Neurosci 5:1332–1338CrossRefGoogle Scholar
  109. Pearce JM (2006) Louis Pierre Gratiolet (1815–1865): the cerebral lobes and fissures. Eur Neurol 56:262–264CrossRefGoogle Scholar
  110. Pearce E, Stringer C, Dunbar RI (2013) New insights into differences in brain organization between Neanderthals and anatomically modern humans. Proc Biol Sci 280:20130168CrossRefGoogle Scholar
  111. Perrett DI, Smith PA, Potter DD, Mistlin AJ, Head AS, Milner AD, Jeeves MA (1985) Visual cells in the temporal cortex sensitive to face view and gaze direction. Proc R Soc Lond B Biol Sci 223:293–317CrossRefGoogle Scholar
  112. Preuss TM (2005) Evolutionary specializations of primate brain systems. In: Ravoso MJ, Dagosto M (eds) Primate origins and adaptations. Kluwer Academic/Plenum Press, New YorkGoogle Scholar
  113. Preuss TM, Coleman GQ (2002) Human-specific organization of primary visual cortex: alternating compartments of dense Cat-301 and calbindin immunoreactivity in layer 4A. Cereb Cortex 12:671–691CrossRefGoogle Scholar
  114. Preuss TM, Qi H, Kaas JH (1999) Distinctive compartmental organization of human primary visual cortex. Proc Natl Acad Sci U S A 96:11601–11606CrossRefGoogle Scholar
  115. Raczkowski D, Rosenquist AC (1983) Connections of the multiple visual cortical areas with the lateral posterior-pulvinar complex and adjacent thalamic nuclei in the cat. J Neurosci 3:1912–1942Google Scholar
  116. Riegele L (1931) Die Cytoarchitektonik der Felder der Broca’schen Region. J Psychol Neurol 42:496–514Google Scholar
  117. Rodiek RW (1988) The primate retina. In: Stelis HD, Erwin J (eds) Comparative primate biology, Neurosciences, vol 4. Liss, New YorkGoogle Scholar
  118. Rosa MG, Tweedale R (2005) Brain maps, great and small: lessons from comparative studies of primate visual cortical organization. Philos Trans R Soc Lond B 360:665–691CrossRefGoogle Scholar
  119. Rottschy C, Eickhoff SB, Schleicher A, Mohlberg H, Kujovic M, Zilles K, Amunts K (2007) Ventral visual cortex in humans: cytoarchitectonic mapping of two extrastriate areas. Hum Brain Mapp 28:1045–1059CrossRefGoogle Scholar
  120. Scheperjans F, Hermann K, Eickhoff SB, Amunts K, Schleicher A, Zilles K (2008) Observer-independent cytoarchitectonic mapping of the human superior parietal cortex. Cereb Cortex 18:846–867CrossRefGoogle Scholar
  121. Schleicher A, Zilles K (1990) A quantitative approach to cytoarchitectonics: analysis of structural inhomogeneities in nervous tissue using an image analyser. J Microsc 157:367–381CrossRefGoogle Scholar
  122. Schleicher A, Amunts K, Geyer S, Morosan P, Zilles K (1999) Observer-independent method for microstructural parcellation of cerebral cortex: a quantitative approach to cytoarchitectonics. NeuroImage 9:165–177CrossRefGoogle Scholar
  123. Schultz AH (1940) The size of the orbit and of the eye in primates. Am J Phys Anthropol 26:389–408CrossRefGoogle Scholar
  124. Schwarzkopf DS, Song C, Rees G (2011) The surface area of human V1 predicts the subjective experience of object size. Nat Neurosci 14:28–30CrossRefGoogle Scholar
  125. Semendeferi K, Damasio H (2000) The brain and its main anatomical subdivisions in living hominoids using magnetic resonance imaging. J Hum Evol 38:317–332CrossRefGoogle Scholar
  126. Sereno M, Allman JM (1991) Cortical visual areas in mammals. In: Leventhal AG (ed) The neural basis of visual function. Macmillan, LondonGoogle Scholar
  127. Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, Rosen BR, Tootell RB (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268:889–893CrossRefGoogle Scholar
  128. Sherwood CC, Hof PR (2007) The evolution of neuron types and cortical histology in apes and humans. In: Kaas JH, Preuss TM (eds) Evolution of nervous systems, The Evolution of Primate Nervous Systems, vol 4. Academic Press, OxfordGoogle Scholar
  129. Sherwood CC, Lee PW, Rivara CB, Holloway RL, Gilissen EP, Simmons RM, Hakeem A, Allman JM, Erwin JM, Hof PR (2003) Evolution of specialized pyramidal neurons in primate visual and motor cortex. Brain Behav Evol 61:28–44CrossRefGoogle Scholar
  130. Sherwood CC, Holloway RL, Erwin JM, Hof PR (2004) Cortical orofacial motor representation in old world monkeys, great apes, and humans. II. Stereologic analysis of chemoarchitecture. Brain Behav Evol 63:82–106CrossRefGoogle Scholar
  131. Sherwood CC, Stimpson CD, Raghanti MA, Wildman DE, Uddin M, Grossman LI, Goodman M, Redmond JC, Bonar CJ, Erwin JM, Hof PR (2006) Evolution of increased glia-neuron ratios in the human frontal cortex. Proc Natl Acad Sci U S A 103:13606–13611CrossRefGoogle Scholar
  132. Sherwood CC, Raghanti MA, Stimpson CD, Bonar CJ, De Sousa AA, Preuss TM, Hof PR (2007) Scaling of inhibitory interneurons in areas V1 and V2 of anthropoid primates as revealed by calcium-binding protein immunohistochemistry. Brain Behav Evol 69:176–195CrossRefGoogle Scholar
  133. Stout D, Toth N, Schick K, Stout J, Hutchins G (2000) Stone tool-making and brain activation: position emission tomography (PET) studies. J Archaeol Sci 27:1215–1223CrossRefGoogle Scholar
  134. Tallinen T, Chung JY, Rousseau F, Girard N, Lefevre J, Mahadevan L (2016) On the growth and form of cortical convolutions. Nat Phys, advance online publicationGoogle Scholar
  135. Thurlow GA, Cooper RM (1988) Metabolic activity in striate and extrastriate cortex in the hooded rat: contralateral and ipsilateral eye input. J Comp Neurol 274:595–607CrossRefGoogle Scholar
  136. Toga AW, Thompson PM, Mori S, Amunts K, Zilles K (2006) Towards multimodal atlases of the human brain. Nat Rev Neurosci 7:952–966CrossRefGoogle Scholar
  137. Tomonaga M (2001) Investigating visual perception and cognition in chimpanzees (Pan troglodytes) through visual search and related tasks: from basic to complex processes. In: Matsuzawa T (ed) Primate origins of human cognition and behavior. Springer, Tokyo, pp 55–86Google Scholar
  138. Tootell RB, Taylor JB (1995) Anatomical evidence for MT and additional cortical visual areas in humans. Cereb Cortex 5:39–55CrossRefGoogle Scholar
  139. Tootell RB, Mendola JD, Hadjikhani NK, Ledden PJ, Liu AK, Reppas JB, Sereno MI, Dale AM (1997) Functional analysis of V3A and related areas in human visual cortex. J Neurosci 17:7060–7078Google Scholar
  140. Tusa RJ, Palmer LA, Rosenquist AC (1978) The retinotopic organization of area 17 (striate cortex) in the cat. J Comp Neurol 177:213–235CrossRefGoogle Scholar
  141. Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Goodale MA, Mansfield RJW (eds) Analysis of visual behavior. MIT Press, Cambridge, MAGoogle Scholar
  142. Van Duffel W, Fize D, Mandeville JB, Nelissen K, Van Hecke P, Rosen BR, Tootell RB, Orban GA (2001) Visual motion processing investigated using contrast agent-enhanced fMRI in awake behaving monkeys. Neuron 32:565–577CrossRefGoogle Scholar
  143. Van Essen DC (1985) Functional organization of the primate visual cortex. In: Peters A, Jones EG (eds) Cerebral cortex. Plenum Press, New YorkGoogle Scholar
  144. Van Essen DC (2004) Organization of visual areas in macaque and human cerebral cortex. In: Chalupa L, Werner J (eds) The visual neurosciences. MIT Press, Cambridge, MAGoogle Scholar
  145. Van Essen DC, Dierker DL (2007) Surface-based and probabilistic atlases of primate cerebral cortex. Neuron 56:209–225CrossRefGoogle Scholar
  146. Van Essen DC, Zeki SM (1978) The topographic organization of rhesus monkey prestriate cortex. J Physiol 277:193–226CrossRefGoogle Scholar
  147. Van Essen DC, Newsome WT, Bixby JL (1982) The pattern of interhemispheric connections and its relationship to extrastriate visual areas in the macaque monkey. J Neurosci 2:265–283Google Scholar
  148. Van Essen DC, Anderson CH, Felleman DJ (1992) Information processing in the primate visual system: an integrated systems perspective. Science 255:419–423CrossRefGoogle Scholar
  149. Vater A, Heinicke JC (1723) Dissertatio qua visus vitia duo rarissima: alterum duplicati, alterum dimidiati physiologice et pathologice considerata exponunturGoogle Scholar
  150. Von Economo C (1929) The cytoarchitectonics of the human cortex. Oxford University Press, OxfordGoogle Scholar
  151. Von Economo C, Koskinas GN (1925) Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. Springer, ViennaGoogle Scholar
  152. Yan T, Jin F, Wu J (2009) Correlated size variations measured in human visual cortex V1/V2/V3 with functional MRI. In: Zhong N, Li K, Lu S, Chen L (eds) Brain informatics: international conference, BI 2009 Beijing, China, October 22–24, 2009 proceedings. Springer Berlin Heidelberg, BerlinGoogle Scholar
  153. Yoshioka T, Hendry SH (1995) Compartmental organization of layer IVA in human primary visual cortex. J Comp Neurol 359:213–220CrossRefGoogle Scholar
  154. Zeki S (2003) Improbable areas in the visual brain. Trends Neurosci 26:23–26CrossRefGoogle Scholar
  155. Zeki SM (2004) Improbable areas in color vision. In: Chalupa LM, Werner JS (eds) The visual neurosciences. MIT Press, Cambridge, MAGoogle Scholar
  156. Zilles K, Clarke S (1997) Architecture, connectivity, and transmitter receptors of human extrastraite visual cortex. In: Rockland KS, Kaas JH, Peters A (eds) Extrastriate cortex in primates. Plenum Press, New YorkGoogle Scholar
  157. Zilles K, Palomero-Gallagher N (2001) Cyto-, myelo-, and receptor architectonics of the human parietal cortex. NeuroImage 14:S8–20CrossRefGoogle Scholar
  158. Zilles K, Schlaug G, Matelli M, Luppino G, Schleicher A, Qu M, Dabringhaus A, Seitz R, Roland PE (1995) Mapping of human and macaque sensorimotor areas by integrating architectonic, transmitter receptor, MRI and PET data. J Anat 187(Pt 3):515–537Google Scholar
  159. Zilles K, Schleicher A, Palomero-Gallagher N, Amunts K (2002) Quantitative analysis of cyto- and receptor architecture of the human brain. In: Toga AW, Mazziotta JC (eds) Brain mapping: the methods, 2nd edn. Elsevier Science, AtlantaGoogle Scholar

Copyright information

© Springer Japan KK 2018

Authors and Affiliations

  1. 1.School of Biological SciencesThe University of QueenslandSt. LuciaAustralia
  2. 2.Psychology, Culture and EnvironmentBath Spa UniversityBathUK

Personalised recommendations