Light-Sensitive Organic Recording Media for Three-Dimensional Optical Memory

  • Valery Barachevsky
  • Mikhail Krayushkin
  • Vadim Kiyko
Chapter

Abstract

This chapter discusses our results on the development of photochromic and photochromogenic polymer materials and recording media thereof for three-dimensional (3D) bitwise working and archival optical memory. The synthesis of original diarylethenes, fulgimides, and chromones and their characterization are reported. The results of spectral-kinetic studies were applied to the development of polymeric recording layers based on the synthesized compounds and the design of multilayer recording media for optical disks. Finally, the homemade setup for optical data writing, rewriting, and readout on the designed recording media and the results of their testing are presented.

Keywords

Diarylethenes Optical memory Recording media Fluorescence switching Chromones Two-photon excitation 

Notes

Acknowledgements

We would like to gratefully acknowledge support from the Russian Foundation for Basic Research (projects N 13-03-00964a, N 13-02-00942a and N 14-03-90022 Bel-a).

References

  1. 1.
    Jutamulia S, Storti GM (1995) Three-dimensional optical digital memory. Optoelectron Devices Technol 10:343–360Google Scholar
  2. 2.
    Kawata S, Kawata Y (2000) Three-dimensional optical storage using photochromic materials. Chem Rev 100:177–1788CrossRefGoogle Scholar
  3. 3.
    Burr GW (2003) Three-dimensional optical storage. Proc SPIE 5225:16–31Google Scholar
  4. 4.
    Mandjikov VF, Darmanyan AP, Barachevsky VA, Gerulaitis YN (1972) Photochromism of organic compounds under laser radiation. Opt Spectr 32:412–413 (Rus.)Google Scholar
  5. 5.
    Bertelson RC (1999) Spiropyrans. In: Crano JC, Guglielmetti RJ (eds) Organic photochromic and thermochromics compounds, vol 1. Plenum, New York, pp 11–84Google Scholar
  6. 6.
    Mandjikov VF, Murin VA, Barachevsky VA (1973) Nonlinear coloration of solutions of photochromic spiropyran. Quant Electron N 2:66–68 (Rus.)Google Scholar
  7. 7.
    Strokach YP, Kuzmin SG, Mandjikov VF, Barachevsky VA (1975) Interaction of ruby laser radiation with transparent solution of photochromic spiropyran. Quant Electron 2:2202–2206 (Rus.)Google Scholar
  8. 8.
    Barachevsky VA, Mandjikov VF, Strokach YP, Kuzmin SG (1977) Study of interaction of ruby laser radiation with transparent solution of photochromic compounds. Intern Tagung “Laser und ihre Anwendungen” 28.3–1.4, Dresden, DDR, pp 413–414Google Scholar
  9. 9.
    Parthenopoulos DA, Rentzepis PM (1989) Three-dimensional optical memory. Science 245:843–845CrossRefGoogle Scholar
  10. 10.
    Parthenopoulos DA, Rentzepis PM (1990) Two-photon volume information storage in doped polymer systems. J Appl Phys 68:5814–5818CrossRefGoogle Scholar
  11. 11.
    Hunter S, Kiamelev F, Esner S, Parthenopoulos DA, Rentzepis PM (1990) Potentials of 2-photon-based 3D optical memories for high-performance computing. Appl Opt 29:2058–2066CrossRefGoogle Scholar
  12. 12.
    Barachevsky VA, Alfimov MV, Nazarov VB (1998) Light-sensitive organic recording media for luminescent readout of optical information. Opt Mem Neur Netw 7:205–212Google Scholar
  13. 13.
    Malkin J, Dvornikov AS, Straub KD, Rentzepis PM (1993) Photochemistry of molecular systems for optical 3D storage memory. Res Chem Intermed 19:159–189CrossRefGoogle Scholar
  14. 14.
    Dvornikov AS, Rentzepis PM (1994) Two-photon three-dimensional optical storage memory. Adv Chem Ser 240:161–177CrossRefGoogle Scholar
  15. 15.
    Dvornikov AS, Rentzepis PM (1994) Photochromism: non-linear picosecond kinetics and 3D computer memory. Mol Cryst Liq Cryst 246:379–388CrossRefGoogle Scholar
  16. 16.
    Dvornikov AS, Malkin J, Rentzepis PM (1994) Spectroscopy and kinetics of photochromic materials for 3D optical memory devices. J Phys Chem 98:6746–6752CrossRefGoogle Scholar
  17. 17.
    Piyaket P, Cokgor I, McCormick FB, Dvornikov AS, Esner S, Rentzepis PM (1996) Two-photon-induced photochromic reactions in spirobenzopyran-doped poly(methyl methacrylate) thin-film waveguides. Opt Lett 21:1032–1034CrossRefGoogle Scholar
  18. 18.
    Hunter S, Solomon C, Esner S, Ford JE, Dvornikov AS, Rentzepis PM (1994) Three-dimensional optical image storage by two-photon recording. Opt Mem Neur Networks 3:151–166Google Scholar
  19. 19.
    Ford JE, Hunter S, Piyaket P, Foinman Y, Esner S, Dvornikov AS, Rentzepis PM (1993) Write/read performance in two-photon 3D memories. Proc SPIE 2026:604–613CrossRefGoogle Scholar
  20. 20.
    McCormick FB, Cokgor I, Esner S, Dvornikov AS, Rentzepis PM (1996) Two-photon absorption-based 3-D optical memories. Proc SPIE 2604:23–32CrossRefGoogle Scholar
  21. 21.
    Liang YC, Dvornikov AS, Rentzepis PM (2003) Nonvolatile read-out molecular memory. PNAS 100:8109–8112CrossRefGoogle Scholar
  22. 22.
    Liang YC, Dvornikov AS, Rentzepis PM (2003). A novel non-destructive readout molecular memory. Opt Commun 223:61–66Google Scholar
  23. 23.
    Dvornikov AS, Liang YC, Rentzepis PM (2004) Ultra-high-density non-destructive readout, rewritable molecular memory. Res Chem Intermed 30:545–546CrossRefGoogle Scholar
  24. 24.
    Dvornikov AS, Liang YC, Cruse CS, Rentzepis PM (2004) Spectroscopy and kinetics of a molecular memory with nondestructive readout for use in 2D and 3D storage systems. J Phys Chem B 108:8652–8658CrossRefGoogle Scholar
  25. 25.
    Dvornikov AS, Liang YC, Rentzepis PM (2005) Dependence of the fluorescence of a composite photochromic molecule on structure and viscosity. J Mater Chem 15:1072–1075CrossRefGoogle Scholar
  26. 26.
    Dvornikov AS, Walker EP, Rentzepis PM (2009) Two-photon three-dimensional optical storage memory. J Phys Chem A 113:13633–13644CrossRefGoogle Scholar
  27. 27.
    Irie M (2000) Diarylethenes for memories and switches. Chem Rev 1(00):1665–1716Google Scholar
  28. 28.
    Irie M (1989) Advances in photochromic materials for optical data storage media. Jpn J Appl Phys 28:215–219CrossRefGoogle Scholar
  29. 29.
    Irie M (1993) Photochromic diarylethenes for optical data storage media. Mol Cryst Liq Cryst 227:263–270CrossRefGoogle Scholar
  30. 30.
    Tsujioka T, Tatezone F, Harada T, Kuroki K, Irie M (1994) Recording sensitivity and superlow-paver readout of photo-mode photochromic memory. Jpn J Appl Phys 33:5788–5792CrossRefGoogle Scholar
  31. 31.
    Tsujioka T, Shimizu Y, Irie M (1994) Crosstalk in photon-mode photochromic multi-wavelength recording. Jpn J Appl Phys 33:1914–1919CrossRefGoogle Scholar
  32. 32.
    Irie M (ed) (1994) Photorefractive materials for ultrahigh-density optical memory. Elsevier, AmsterdamGoogle Scholar
  33. 33.
    Tsujioka T (1998). Photochromism and its application to a high-density optical memory. Mol Cryst Liq Cryst Sci Technol Sect A 315:1–9Google Scholar
  34. 34.
    Toriumi A, Kawata GuM (1998) Reflection confocal microscope readout system for three-dimensional photochromic optical data storage. Opt Lett 23:1924–1926CrossRefGoogle Scholar
  35. 35.
    Gu M, Amistoso JO, Toriumi A, Kawata S (2001) Effect of saturable response to two-photon absorption on the readout signal level of three-dimensional bit optical data storage in a photochromic polymr. Appl Phys Lett 79:148–150CrossRefGoogle Scholar
  36. 36.
    Tsujioka T, Irie M (2001) Two-photon absorption in photochromic layer with highly localized photons. Opt Rev 8:206–207CrossRefGoogle Scholar
  37. 37.
    Amistoso JO, Gu M, Kawata S (2002) Characterization of confocal readout systems in a photochromic polymer under two-photon excitation. Jpn J Appl Phys 41:5160–5165CrossRefGoogle Scholar
  38. 38.
    Giordano L, Jovin TM, Irie M, Jares-Erijman EA (2002) Diheteroarylethenes as thermally stable photoswitchable acceptors in photochromic fluorescence resonance energy transfer (pcFRET). J Am Chem Soc 124:7481–7489CrossRefGoogle Scholar
  39. 39.
    Luchita G, Bondar MV, Yao S, Mikhailov IA, Yanez C, Przhonska OV, Masunov AE, Belfield KD (2011) Efficient photochromic transformation of a new fluorenyl diarylethene: one- and two-photon absorption spectroscopy. ACS Appl Mater Interfaces 3:3559–3567CrossRefGoogle Scholar
  40. 40.
    Corredor CC, Huang ZL, Belfield KD (2006) Two-photon 3D optical data Storage via fluorescence modulation of an efficient fluorene dye by a photochromic diarylethene. Adv Mater 18:2910–2914CrossRefGoogle Scholar
  41. 41.
    Corredor CC, Huang ZL, Belfield KD, Morales AR, Bondar MV (2007) Photochromic polymer composites for two-photon 3D optical data storage. Chem Mater 19:5165–5173CrossRefGoogle Scholar
  42. 42.
    Belfield KD, Bondar MV, Corredor CC, Hernandez FE, Przhonska OV, Yao S (2006) Two-photon photochromism of a diarylethene enhanced by Forster resonance energy transfer from two-photon absorbing fluorenes. Chem Phys Chem 7:2514–2519CrossRefGoogle Scholar
  43. 43.
    Kozlov DV, Castellano FN (2004) Photochemmicdlly reversible luminescence lifetime switching in metal-organic sysyems. J Phys Chem A 108:10619–10622CrossRefGoogle Scholar
  44. 44.
    Zweig A (1973) Photochemical generation of stable fluorescent compounds (photofluorescence). Pure Appl Chem 33:389–410CrossRefGoogle Scholar
  45. 45.
    Barachevsky VA, Alfimov MV, Nazarov VB (1998) Light-sensitive organic recording media for luminescent readout of optical information. Opt Mem Neur Netw 7:205–212Google Scholar
  46. 46.
    Dvornikov AS, Rentzepis PM (1997) Novel organic ROM materials for optical 3D memory devices. Opt Commun 136:1–6CrossRefGoogle Scholar
  47. 47.
    Dvornikov AS, Tomov IV, Chen P, Rentzepis PM (1997) Photochemistry of nitro-naphthaldehyde based 3D memory materials. Mol Cryst Liq Cryst 297:527–534Google Scholar
  48. 48.
    Wang J, Stucky GD (2004) Mesostrured composite materials for multibit-per-site optical data storage. Adv Funct Mater 14:409–415CrossRefGoogle Scholar
  49. 49.
    Walker E, Dvornikov A, Coblentz K, Esener S, Rentzepis P (2007). Towards terabyte two-photon 3D disk. Opt Express 15:12264–12276Google Scholar
  50. 50.
    Walker E, Dvornikov A, Coblentz K, Esener S, Rentzepis PM (2007) 253 GB recorded in two-photon 3D disk. Proc SPIE 6620:66200A-1–66200A-4Google Scholar
  51. 51.
    Walker E, Dvornikov A, Coblentz K, Rentzepis P (2008) Terabyte recorded in two-photon 3D disk. Appl Opt 47:4133–4139CrossRefGoogle Scholar
  52. 52.
    Yanez CO, Andrade CD, Yao S, Luchita G, Bondar NV, Belfield KD (2009). Photosensitive polymer materials for two-photon 3D WORM optical data storage systems. Appl Mater Interfaces 1:2919–2229Google Scholar
  53. 53.
    Ivanov IV, Dolotov SM, Kobeleva OI, Valova TM, Barachevsky VA, Traven VF (2013) Photoactivation of fluorescence of rhodamine dyes in the presence of haloalkanes. Rus Chem Bull Int Ed 62:1195–1200CrossRefGoogle Scholar
  54. 54.
    Traven VF, Ivanov IV, Dolotov SM, Kobeleva OI, Valova TM, Barachevsky VA (2014) Aryl(hetaryl)pyrazolines as new photoacid generators for optical information recording. J Photochem Photobiol A 295:34–39CrossRefGoogle Scholar
  55. 55.
    Barachevsky VA, Strokah YP, Valova TM, Puankov YA, Krayushkin MM (2007) Thermally irreversible organic compounds for optical memory. J Phys Org Chem 20:1007–1020CrossRefGoogle Scholar
  56. 56.
    Barachevsky VA, Strokach YP, Valova TM, Puankov YA, Krayushkin MM (2007) New bistable organic photochromic compounds for bitwise working optical memory. Opt Mem Neur Netw 16:51–56CrossRefGoogle Scholar
  57. 57.
    Barachevsky VA, Krayushkin MM (2008) Photochromic organic compounds for optical memory. Russ Chem Bull Int Ed 57:867–875CrossRefGoogle Scholar
  58. 58.
    Barachevsky VA, Strokach YP, Puankov YA, Kobeleva OI, Valova TM, Levchenko KS, Yarovenko VN, Krayushkin MM (2009) Light-sensitive heterocyclic compounds for information nanotechnologies. ARKIVOC IX:70–95Google Scholar
  59. 59.
    Barachevsky VA, Strokach YP, Krayushkin MM (2005) Photochromism of thienyl-containing dihetarylethenes with five-membered cyclic bridges. Mol Cryst Liq Cryst 430:181–186Google Scholar
  60. 60.
    Krayushkin MM, Kalik MA (2014) 1,2-Bis(hetaryl)perfluorocyclopentenes as unique thermally irreversible photochromes. Synthesis and structural singularities. In: Fluorine in heterocyclic chemistry, vol 1. Springer, Switzerland, pp 515–553Google Scholar
  61. 61.
    Yarovenko VN, Semenov SL, Zavarzin IV, Kadentsev VI, Kalik MA, Krayushkin MM, Strokach YP, Valova TM, Golotyuk ZO, Barachevskii VA (2005) Photochromic 1,2-dihetarylethenes with perfluorocyclopentene bridge: synthesis and spectral and kinetic study. Russ Chem Bull 54:2790–2793CrossRefGoogle Scholar
  62. 62.
    Strokach YP, Valova TM, Golotyk ZO, Barachevskii VA, Yurovenko VN, Kalik MA, Krayushkin MM (2005) Relative spectral-kinetic study of solutions of photochromic derivatives of cyclofluorocyclopentene from the diarylethene class. Opt Spectr 99:714–718Google Scholar
  63. 63.
    Bogacheva AM, Yarovenko VN, Levchenko KS, Kobeleva OI, Valova TM, Barachevsky VA, Struchkova MI, Shmelin PS, Krayushkin MM, Charushin VN (2012) A convenient method for the preparation of mono- and bis-substituted photochromic bis (benzothienyl) perfluorocyclopentenes via regioselective Friedel-Crafts acylation. Tetrahedron Lett 53:5948–5951CrossRefGoogle Scholar
  64. 64.
    Krayushkin MM, Lichitskii BV, Dudinov AA, Kuznetsova Platonova IV, Barachevskii VA (2010) Novel photochromic dithienylperfluorocyclopentenes with rhodanine fragments: synthesis and spectroscopic properties. Russ Chem Bull Int Ed 59:2126–2128CrossRefGoogle Scholar
  65. 65.
    Krayushkin MM, Kalik MA, Kozhinov DV, Martynkin AY, Strokach YP, Barachevskii VA (2005) Photochromic dihetaryletheves. 21. Synthesis and photochemical properties of 1,2-bis{2-ethyl-5-(bensothiazole-2-yl)thieno-3-yl}hexafluorocyclopenten. Chem Heterocycl Compd 41:312–316CrossRefGoogle Scholar
  66. 66.
    Krayushkin MM, Yarovenko VN, Khristoforova LV, Shaskov AS, Grebennikov EP, Devyatkov AG, Adamov GE, Levchenko KS, Shmelin PS, Barachevskii VA, Valova TM, Kobeleva OI (2011) The synthesis and study of multilayer polymer structures based on 1,2-bis(2-methylbenzo[b]thiophen-3-yl)cyclopent-1-ene. Russ Chem Bull Int Ed 60:2536–2543Google Scholar
  67. 67.
    Krayushkin MM, Bogacheva AM, Komogortsev AN, Lichitsky BV, Dudinov AA, Levchenko KS, Kobeleva OI, Valova TM, Barachevsky VA, Charushin VN (2013) Synthesis and optical properties of new photochromic systems based on 1,2-bis(2-methylbenzo[b]thien-3-yl) hexafluorocyclopentenes and 5,7-dihydro-1H-1,2,5,7,8-pentaaza-s-indacen-6-one or 1,7-dihydro-5-thia-1,2,7,8-tetraaza-s-indacen-6-one derivatives. J Sulf Chem 34:580–587CrossRefGoogle Scholar
  68. 68.
    Krayushkin MM, Bogacheva AM, Levchenko KS, Kobeleva OI, Valova TM, Barachevskii VA, Pozzo JL, Struchkova MI, Shmelin PS, Kalik MA, Baryshnikova TK, Charushin VN (2013) Synthesis of photochromic 6-aryl-substituted bis(benzothiophenyl) perfluorocyclopentenes by the Suzuki-Moyaura cross-coupling. Mendeleev Commun 23:78–80CrossRefGoogle Scholar
  69. 69.
    Krayushkin MM, Lichitskii BV, Dudinov AA, Kuznetsova Kobeleva OI, Valova TM, Barachevskii VA (2010) Synthesis and photochromic properties of thiosemicarbazide and thiocarbazate derivatives of dithienylperfluorocyclopentene. Russ Chem Bull Int Ed 59:1047–1050CrossRefGoogle Scholar
  70. 70.
    Krayushkin MM, Barachevsky VA, Irie M (2007) Synthesis of thienyl-containing photochromes (dithienylethenes, fulgides, fulgimidesand spirocompounds. Heteroatom Chem 18:557–567CrossRefGoogle Scholar
  71. 71.
    Krayushkin MM, Kalik MA, Migulin VA (2009) McMurry reaction in the synthesis of photochromic dihetarylethenes. Russ Chem Rev 78:329–336CrossRefGoogle Scholar
  72. 72.
    Krayushkin MM, Yarovenko VN, Semenov SL, Zavarzin IV, Ignatenko AV, Martynkin AYu, and Uzhinov BM (2002) Photochromic dihetarylethenes throw McMurry reaction. Org Lett 4:3879–3841Google Scholar
  73. 73.
    Migulin VA, Krayushkin MM, Barachevsky VA, Kobeleva OI, Valova TM, Lyssenko KA (2012) Synthesis and characterization of nonsymmetric cyclopentene-based dithienylethenes. J Org Chem 77:332–340CrossRefGoogle Scholar
  74. 74.
    Migulin VA, Krayushkin MM, Barachevsky VA, Kobeleva OI, Novikov VV, Lyssenko KA (2015) Synthesis and studies of symmetric dibenzothienylcyclopentenes. Tetrahedron 71:584–598CrossRefGoogle Scholar
  75. 75.
    Krayushkin MM, Migulin VA, Yarovenko VN, Barachevskii VA, Vorontsova LG, Starikova ZA, Zavarzin IV, Bulgakova VN (2007) Synthesis and characterisation of 1,2-dihetarylethenes containing chlorobenzothiophene moieties. Mendeleev Commun 17:125–129CrossRefGoogle Scholar
  76. 76.
    Shorunov SV, Krayushkin MM, Stoyanovich FM Irie M (2006) A convenient synthesis of 3,4-diaryl(hetaryl)-substituted maleimides and maleic anhydrides. Photochromic N-substituted maleimides. Russ J Org Chem 42:1490–1497Google Scholar
  77. 77.
    Kuznetsova OY, Platonova IV, Lichitskii BV, Krayushkin MM, Barachevskii VA (2012) Synthesis and photochromic properties of dithienyleimides with sulfur-containing fragments. Russ Chem Bull Int Ed 61:2109–2113CrossRefGoogle Scholar
  78. 78.
    Strokach YP, Valova TM, Golotyk ZO, Barachevskii VA, Kuznetsova OY, Yurovenko VN, Semenov SL, Zavarzin IV, Shirinian VZ, Krayushkin MM (2005) Relative spectral-kinetic study of photochromic dihetarylethenes based on maleine anhydride and maleinimides. Opt Spectr 99:573–578CrossRefGoogle Scholar
  79. 79.
    Krayushkin MM, Pashchenko DV, Lichitskii BV, Valova TM, Strokach YP, Barachevskii VA (2006) Heterocyclic bridges in photochromic dihetarylethenes. Russ J Org Chem 42:1816–1821CrossRefGoogle Scholar
  80. 80.
    Strokach YP, Kobeleva OI, Valova TM, Barachevskii VA, Paschenko DV, Lichitskii BV, Krayushkin (2007) Spectral study of properties of photochromic polysubstituted lactones. Opt Spectr 103:936–942Google Scholar
  81. 81.
    Bochkov AY, Krayushkin MM, Yarovenko VN, Barachevsky VA, Beletskaya IP, Traven VF (2013) Synthesis of 3-(5-ethylthiophen-2-yl)coumarins and their photochromic dihetarylethene derivatives. J Heterocycl Chem 50:891–898CrossRefGoogle Scholar
  82. 82.
    Krayushkin MM, Ivanov SN, Martynkin AYu, Lichitsky BV, Dudinov AA, Uzhinov BM (2001). Photochromic properties of 1,2-dihetarylethenes with heterocyclic bridges. Izv Akad Nauk Ser Khim 50:113–118 (Rus.)Google Scholar
  83. 83.
    Krayushkin MM, Ivanov SN, Martynkin AYu, Lichitsky BV, Uzhinov BM (2001) Synthesis and properties of 1,2-dihetarylethenes with heterocyclic bridges. Izv Akad Nauk Ser Khim 50:2315–2319 (Rus.)Google Scholar
  84. 84.
    Krayushkin MM, Kalik MA (2011) Syntheses of photochromic dihetarylethenes. In: Katritzky AR (ed) Advances in heterocyclic chemistry, vol 103. Academic Press, Oxford, pp 1–59Google Scholar
  85. 85.
    Micheau JC, Coudret C, Kobeleva OI, Barachevsky VA, Yarovenko VN, Ivanov SN, Lichitsky BV, Krayushkin MM (2014) Quantitative study of photochromic transformations of diarylethene derivatives with either perhydrocyclopentene or oxazolone or lactone units. Dyes Pigm 106:32–38CrossRefGoogle Scholar
  86. 86.
    Shirinian VZ, Lonshakov DV, Lvov AG, Krayushkin MM (2013) Fluorescent photochromes of diarylethene series: synthesis and properties. Russ Chem Rev 82:511–537CrossRefGoogle Scholar
  87. 87.
    Lonshakov DV, Shirinian VZ, Lvov AG, Nabatov BV, Krayushkin MM (2013) New fluorescent switches based on photochromic 2,3-diarylcyclopent-2-en-1-ones and 6-ethoxy-3-methyl-1H-phenalen-1-one. Dyes Pigm 97:311–317CrossRefGoogle Scholar
  88. 88.
    Krayushkin MM, Shorunov SV, Luyksaar SI, Strokach YP, Valova TM, Golotyuk ZO, Barachevskiy VA (2006) Synthesis and spectral kinetic investigation of solutions of photochromic thienylfulgimides. Chem Heterocycl Compd 42:1012–1017CrossRefGoogle Scholar
  89. 89.
    Ilyina IG, Mel’nikov VV, Luyksaar SI, Krayushkin MM, Pyankov YA, Barachevsky VA, Fedyanin IV (2008) Synthesis and spectral-kinetic investigation of fulgimide-based photochromic autocomplexes of dinitroquinoline series. Russ Chem Bull Int Ed 57:1444–1450Google Scholar
  90. 90.
    Luyksaar SI, Krayushkin MM, Pyankov YA, Barachevsky VA (2010) Synthesis of photochromic bisfulgimides by the condensation of (3Z)-3-[1-(2,5-dimethyl-3-thienyl)-ethylidene-2,5-furandione with aromatic diamines. Chem Heterocycl Compd 46:822–828CrossRefGoogle Scholar
  91. 91.
    Karabaeva LK, Platonova IA, Zavarzin IV, Luiksaar SI, Yarovenko VN, Nabatov BV, Krayushkin MM, Barachevski VA (2011) Synthesis, photochromic and fluorescent properties of hybrid compounds of fulgimides and benzothiazolylthienothiophene. Chem Heterocycl Compd 47:229–236CrossRefGoogle Scholar
  92. 92.
    Luiksaar SI, Platonova IA, Krayushkin MM, Barachevskii VA (2011) Synthesis of hybrid photochromes containing fulgimide and salicylidenaniline fragments and study of their properties. Russ Chem Bull Int Ed 60:861–866CrossRefGoogle Scholar
  93. 93.
    Markova GD, Vasnev VA, Keshtov ML, Khoklov AR, Krayushkin MM, Ivanov SN, Valova TM, Dunaev AA, Strokach YP, Barachevskii VA, Vorontsova LG, Starikova ZA (2006) New photochromic polymers. Polym Sci B 48:18–22Google Scholar
  94. 94.
    Krayushkin MM, Shimkina NG, Barachevsky VA, Dunaev AA, Izmailov BA, Vasnev VA, Keshtov ML (2008) Photochromic silicone polymers based on 1,2-diarylethenes (IB-3034-FP). ARKIVOC IV:112–119Google Scholar
  95. 95.
    Kovalev AI, Rusanov AL, Krayushkin MM, Yarovenko VN, Dunaev AA, Pyuankov YA, Barachevskii VA (2010) Photochromic oligoasomethines with di(benzothiophenyl)cyclopentene moieties. Polymer Sci B 52:73–76Google Scholar
  96. 96.
    Rodlovskaya EN, Izmailov BA, Vasnev VA, Komarova LI, Luiksaar SI, Krayushkin MM, Barachevskii VA, Kobeleva OI, Valova TM (2011) Photochromic fulgimide-containing silicones immobilized on the surface of polyarylate. Polym Sci B 53:352–357Google Scholar
  97. 97.
    Komogortsev AN, Lichitsky BV, Dudinov AA, Krylov KS, Bogacheva AM, Kobeleva OI, Barachevskii VA, Krayushkin MM (2013) Three-component condensation of iminoazolidines with aldehydes and 5-aminopyrazole. Mendeleev Commun 23:222–223CrossRefGoogle Scholar
  98. 98.
    Levchenko KS, Barachevski VA, Kobeleva OI, Venidiktova OV, Valova TM, Bogacheva AM, Chudov KA, Grebennikov EP, Shmelin PS, Poroshin NO, Adamov GE, Yarovenko VN, Krayushkin MM (2015) Synthesis of new fluorescent 1-(thien-2-yl)-9H-thieno[3,4-b]-chroman-9-ones and their fluorescent photomodulation by photochromic dihetarylethenes. Tetrahedron Lett 56:1085–1088CrossRefGoogle Scholar
  99. 99.
    Huffman KR, Kuhn CE, Zweig A (1970) Photoisomerization of 3-aroyl-2-(2-furyl) chromones. Example of quenching of a photochemical reaction by a product. J Am Chem Soc 92:599–605CrossRefGoogle Scholar
  100. 100.
    Krayushkin MM, Levchenko KS, Yarovenko VN, Zavarzin IV, Barachevsky VA, Puankov YA, Valova TM, Kobeleva OI (2009) Synthesis and study of photosensitive chromone derivatives for recording media of archival three-dimension optical memory. ARKIVOC IX:269–283Google Scholar
  101. 101.
    Krayushkin MM, Levchenko KS, Yarovenko VN, Christoforova LV, Barachevsky VA, Puankov YA, Valova TM, Kobeleva OI (2009) Synthesis and reactivity of 1-aryl -9H-thieno[3,4-b]chromon-9-ones. New J Chem 33:2267–2277Google Scholar
  102. 102.
    Levchenko КS, Barachevsky VA, Yarovenko VN, Кrayushkin MM, Semenova IS, Kobeleva OI, Valova TM, Shmelin PS (2011) Synthesis and properties of photosensitive compounds based on bromine-containing 3-acyl-2-furylchromones. Chem Heterocyclic Compd 47:155–165CrossRefGoogle Scholar
  103. 103.
    Semenova IS, Levchenko KS, Yarovenko VN, Krayushkin MM, Barachevsky VA, Kobeleva OI, Valova TM (2012) Synthesis and modification of light-sensitive 3-acyl-2-hetarylchromones containing bromomethyl group in the acyl fragmen. Russ Chem Bull Int Ed 61:1761–1768CrossRefGoogle Scholar
  104. 104.
    Chudov KA, Levchenko KS, Yarovenko VN, Krayushkin MM, Чyдoв Barachevsky VA К A, Baryshnikova TK, Grebennikov EP (2015) Synthesis of photoactive 5-aroyl-4-furyl-2-(morpholin-4-yl)thiazoles. Russ Chem Bull Int Ed 66:405–409CrossRefGoogle Scholar
  105. 105.
    Kobeleva OI, Valova TM, Barachevsky VA, Semenova IS, Levchenko KS, Yarovenko VN, Krayushkin MM (2013) Spectral-kinetic study of phototransformations of new 3-acyl-2-hetarylchromones. Opt Spectr 114:401CrossRefGoogle Scholar
  106. 106.
    Barachevsky VA, Kobeleva OI, Valova TM, Ait AO, Dunaev AA, Gorelik AM, Krayushkin MM, Kyiko VV, Grebennikov EP (2010) Light-sensitive organic systems and multilayer polymer structures for optical recording media. Proc SPIE 7722:77221–77225Google Scholar
  107. 107.
    Martynov IY, Barachevsky VA, Ait AO, Kobeleva OI, Valova TM, Levchenko KS, Yarovenko VN, Krayushkin MM (2014) Fluorescence properties of light-sensitive chromones used in archival polymer recording media. Opt Mater 37:488–492CrossRefGoogle Scholar
  108. 108.
    Barachevsky VA, Krayushkin MM, Kyiko VV, Grebennikov EP (2011) Light-sensitive organic recording media for 3D optical memory. Phys Status Solidi C 8:2841–2845CrossRefGoogle Scholar
  109. 109.
    Barachevsky VA (2008) Photonics of organic photochromic systems: modern trends. J Photochem Photobiol A 196:180–189Google Scholar
  110. 110.
    Barachevsky VA, Kobeleva OI, Valova TM, Ait AO, Dunaev AA, Gorelik AM, Krayushkin MM, Levchenko KS, Yarovenko VN, Kiyko VV, Grebennikov EP (2010) Photochromic and irreversible photofluorescent organic materials for 3D bitwise optical memory. Opt Mem Neur Netw (Inf Opt) 19:187–195Google Scholar
  111. 111.
    Barachevsky VA, Kobeleva OI, Ayt AO, Gorelik AM, Valova TM, Krayushkin MM, Yarovenko VN, Levchenko KS, Kiyko VV, Vasilyuk GT (2013) Optical polymer materials with photocontrolled fluorescence. Opt Mater 35:1805–1809CrossRefGoogle Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  • Valery Barachevsky
    • 1
  • Mikhail Krayushkin
    • 2
  • Vadim Kiyko
    • 3
  1. 1.Photochemistry Center of the Russian Academy of SciencesMoscowRussia
  2. 2.N.D. Zelinsky Institute of Organic Chemistry of the Russian Academy of SciencesMoscowRussia
  3. 3.A.M. Prokhorov Institute of General Physics of the Russian Academy of SciencesMoscowRussia

Personalised recommendations