Photochromism of Pentaarylbiimidazoles and Phenoxyl-Imidazolyl Radical Complexes

  • Yoichi Kobayashi
  • Jiro Abe


Considerable interest has been focused on organic photochromic materials that change their color upon irradiation with light; the photogenerated colored species can be reversed to the initial colorless species either by thermally or by subsequent irradiation with a specific wavelength of light. In particular, thermally reversible photochromic molecules offer the opportunity to change and reset the molecular properties by simply turning a light source on and off. Increasing the thermal-bleaching rate for thermally reversible photochromic molecules is essential for the development of revolutionary optical switching devices such as optical data processing and light modulators. We designed and synthesized a new type of fast photochromic molecules, pentaarylbiimidazole (PABI), and phenoxyl-imidazolyl radical complex (PIC). PABI and PIC show photoinduced homolytic bond cleavage of the C–N bond between the two imidazole rings or between the imidazole rings and the 4H-cyclohexadienone rings, respectively, and successive fast C–N bond formation. Moreover, they exhibit high fatigue resistance against repeated photochromic reactions. As compared with other photochromic molecules, these novel fast photochromic molecules are characterized by their diversity in molecular design and are promising materials for prospective fast light modulator applications.


Hexaarylbiimidazole Pentaarylbiimidazole Imidazole dimer Radical complex Fast photochromism Phenoxyl radical 



This work was supported partly by the Core Research for Evolutionary Science and Technology (CREST) program of the Japan Science and Technology Agency (JST) and JSPS KAKENHI Grant Number JP26107010 in Scientific Research on Innovative Areas “Photosynergetics,” Japan. Financial assistance for this research was also provided by the MEXT-Supported Program for the Strategic Research Foundation at Private Universities, 2013–2017.


  1. 1.
    Hayashi T, Maeda K (1960) Preparation of a new phototropic substance. Bull Chem Soc Jpn 33:565–566CrossRefGoogle Scholar
  2. 2.
    White DM, Sonnenberg J (1966) Oxidation of triarylimidazoles. Structures of the photochromic and piezochromic dimers of triarylimidazolyl radicals. J Am Chem Soc 88:3825–3829CrossRefGoogle Scholar
  3. 3.
    Riem RH, MacLachlan A, Coraor GR, Urban EJ (1971) The flash photolysis of a substituted hexaarylbiimidazole and reactions of the imidazolyl radical. J Org Chem 36:2272–2275CrossRefGoogle Scholar
  4. 4.
    Cescon LA, Coraor GR, Dessauer R, Silversmith EF, Urban EJ (1971) Some properties of triarylimidazolyl radicals and their dimer. J Org Chem 36:2262–2267CrossRefGoogle Scholar
  5. 5.
    Qin XZ, Liu A, Trifunac AD, Krongauz VV (1991) Photodissociation of hexaarylbiimidazole. 1. Triplet-state formation. J Phys Chem 95:5822–5826CrossRefGoogle Scholar
  6. 6.
    Kawano M, Sano T, Abe J, Ohashi Y (1999) The first in situ direct observation of the light-induced radical pair from a hexaarylbiimidazolyl derivative by X-ray crystallography. J Am Chem Soc 121:8106–8107CrossRefGoogle Scholar
  7. 7.
    Abe J, Sano T, Kawano M, Ohashi Y, Matsushita MM, Iyoda T (2001) EPR and density functional studies of light-Induced radical pairs in a single crystal of a hexaarylbiimidazolyl derivative. Angew Chem Int Ed 40:580–582CrossRefGoogle Scholar
  8. 8.
    Kikuchi A, Iyoda T, Abe J (2002) Electronic structure of light-induced lophyl radical derived from a novel hexaarylbiimidazole with π-conjugated chromophore. Chem Commun 14:1484–1485CrossRefGoogle Scholar
  9. 9.
    Satoh Y, Ishibashi Y, Ito S, Nagasawa Y, Miyasaka H, Chosrowjan H, Taniguchi S, Mataga N, Kato D, Kikuchi A, Abe J (2007) Ultrafast laser photolysis study on photodissociation dynamics of a hexaarylbiimidazole derivative. Chem Phys Lett 448:228–231CrossRefGoogle Scholar
  10. 10.
    Miyasaka H, Satoh Y, Ishibashi Y, Ito S, Nagasawa Y, Taniguchi S, Chosrowjan H, Mataga N, Kato D, Kikuchi A, Abe J (2009) Ultrafast photodissociation dynamics of a hexaarylbiimidazole derivative with pyrenyl groups: dispersive reaction from femtosecond to 10 ns time regions. J Am Chem Soc 131:7256–7263CrossRefGoogle Scholar
  11. 11.
    Kimoto A, Niitsu S, Iwahori F, Abe J (2009) Formation of hexaarylbiimidazole heterodimers via cross recombination of two lophyl radicals. New J Chem 33:1339–1342CrossRefGoogle Scholar
  12. 12.
    Delbaere S, Orio M, Berthet J, Sliwa M, Hatano S, Abe J (2013) Insights into the recombination of radical pair in hexaarylbiimidazoles. Chem Commun 49:5841–5843CrossRefGoogle Scholar
  13. 13.
    Berdzinski S, Strehmel N, Lindauer H, Strehmel V, Strehmel B (2014) Extended mechanistic aspects on photoinitiated polymerization of 1,6-hexanediol diacrylate by hexaarylbisimidazoles and heterocyclic mercapto compounds. Photochem Photobiol Sci 13:789–798CrossRefGoogle Scholar
  14. 14.
    Edkins RM, Probert MR, Robertson CM, Howard JA, Beeby A (2014) Photocrystallisation of the 2C–2′C dimer of a triphenylimidazolyl radical. RSC Adv 4:5351–5356CrossRefGoogle Scholar
  15. 15.
    Sathe SS, Ahn D, Scott TF (2015) Re-examining the photomediated dissociation and recombination kinetics of hexaarylbiimidazoles. Ind Eng Chem Res 54:4203–4212CrossRefGoogle Scholar
  16. 16.
    Iwahori F, Hatano S, Abe J (2007) Rational design of a new class of diffusion-inhibited HABI with fast back-reaction. J Phys Org Chem 20:857–863CrossRefGoogle Scholar
  17. 17.
    Fujita K, Hatano S, Kato D, Abe J (2008) Photochromism of a radical diffusion-inhibited hexaarylbiimidazole derivative with intense coloration and fast decoloration performance. Org Lett 10:3105–3108CrossRefGoogle Scholar
  18. 18.
    Kishimoto Y, Abe J (2009) A fast photochromic molecule that colors only under UV light. J Am Chem Soc 131:4227–4229CrossRefGoogle Scholar
  19. 19.
    Harada Y, Hatano S, Kimoto A, Abe J (2010) Remarkable acceleration for back-reaction of a fast photochromic molecule. J Phys Chem Lett 1:1112–1115CrossRefGoogle Scholar
  20. 20.
    Mutoh K, Hatano S, Abe J (2010) An efficient strategy for enhancing the photosensitivity of photochromic [2.2]paracyclophane-bridged imidazole dimers. J Photopolym Sci Technol 23:301–306CrossRefGoogle Scholar
  21. 21.
    Kimoto A, Tokita A, Horino T, Oshima T, Abe J (2010) Fast photochromic polymers carrying [2.2]paracyclophane-bridged imidazole dimer. Macromolecules 43:3764–3769CrossRefGoogle Scholar
  22. 22.
    Hatano S, Sakai K, Abe J (2010) Unprecedented radical-radical reaction of a [2.2]paracyclophane derivative containing an imidazolyl radical moiety. Org Lett 12:4152–4155CrossRefGoogle Scholar
  23. 23.
    Hatano S, Fujita K, Tamaoki N, Kaneko T, Nakashima T, Naito M, Kawai T, Abe J (2011) Reversible photogeneration of a stable chiral radical-pair from a fast photochromic molecule. J Phys Chem Lett 2:2680–2682CrossRefGoogle Scholar
  24. 24.
    Mutoh K, Abe J (2011) Comprehensive understanding of structure-photosensitivity relationships of photochromic [2.2]paracyclophane-bridged imidazole dimers. J Phys Chem A 115:4650–4656CrossRefGoogle Scholar
  25. 25.
    Takizawa M, Kimoto A, Abe J (2011) Photochromic organogel based on [2.2]paracyclophane-bridged imidazole dimer with tetrapodal urea moieties. Dyes Pigm 89:254–259CrossRefGoogle Scholar
  26. 26.
    Mutoh K, Abe J (2011) Photochromism of a water-soluble vesicular [2.2]paracyclophane-bridged imidazole dimer. Chem Comm 47:8868–8870CrossRefGoogle Scholar
  27. 27.
    Yamashita H, Abe J (2011) Photochromic properties of [2.2]paracyclophane-bridged imidazole dimer with increased photosensitivity by introducing pyrenyl moiety. J Phys Chem A 115:13332–13337CrossRefGoogle Scholar
  28. 28.
    Kawai S, Yamaguchi T, Kato T, Hatano S, Abe J (2012) Entropy-controlled thermal back-reaction of photochromic [2.2]paracyclophane-bridged imidazole dimer. Dyes Pigm 92:872–876CrossRefGoogle Scholar
  29. 29.
    Mutoh K, Nakano E, Abe J (2012) Spectroelectrochemistry of a photochromic [2.2]paracyclophane-bridged imidazole dimer: Clarification of the electrochemical behavior of HABI. J Phys Chem A 116:6792–6797CrossRefGoogle Scholar
  30. 30.
    Mutoh K, Shima K, Yamaguchi T, Kobayashi M, Abe J (2013) Photochromism of a naphthalene-bridged imidazole dimer constrained to the “anti” conformation. Org Lett 15:2938–2941CrossRefGoogle Scholar
  31. 31.
    Shima K, Mutoh K, Kobayashi Y, Abe J (2014) Enhancing the versatility and functionality of fast photochromic bridged-imidazole dimers by flipping imidazole ring. J Am Chem Soc 136:3796–3799CrossRefGoogle Scholar
  32. 32.
    Iwasaki T, Kato T, Kobayashi Y, Abe J (2014) A chiral BINOL-bridged imidazole dimer possessing sub-millisecond fast photochromism. Chem Commun 50:7481–7484CrossRefGoogle Scholar
  33. 33.
    Yamaguchi T, Hilbers MF, Reinders PP, Kobayashi Y, Brouwer AM, Abe J (2015) Nanosecond photochromic molecular switching of a biphenyl-bridged imidazole dimer revealed by wide range transient absorption spectroscopy. Chem Commun 51:1375–1378CrossRefGoogle Scholar
  34. 34.
    Ishii N, Kato T, Abe J (2012) A real-time dynamic holographic material using a fast photochromic molecule. Sci Rep 2:819CrossRefGoogle Scholar
  35. 35.
    Ishii N, Abe J (2013) Fast photochromism in polymer matrix with plasticizer and real-time dynamic holographic properties. Appl Phys Lett 102:163301CrossRefGoogle Scholar
  36. 36.
    Mutoh K, Sliwa M, Abe J (2013) Rapid fluorescence switching by using a fast photochromic [2.2]paracyclophane-bridged imidazole dimer. J Phys Chem C 117:4808–4814CrossRefGoogle Scholar
  37. 37.
    Yamashita H, Abe J (2014) Pentaarylbiimidazole, PABI: an easily synthesized fast photohromic molecules with superior durability. Chem Commun 50:8468–8471CrossRefGoogle Scholar
  38. 38.
    Yamashita H, Ikezawa T, Kobayashi Y, Abe J (2015) Photochromic phenoxyl-imidazolyl radical complexes with decoloration rates from tens of nanoseconds to seconds. J Am Chem Soc 137:4952–4955CrossRefGoogle Scholar
  39. 39.
    Blinder SM, Peller ML, Lord NW, Aamodt LC, Ivanchukov NS (1962) Electron spin resonance of tetraphenylpyrryl radical. J Chem Phys 36:540–544CrossRefGoogle Scholar
  40. 40.
    Nakatuji K, Oda M, Kozaki M, Morimoto Y, Okada K (1998) 4,4′-(Trimethylene)bis(2,6-di-t-butylphenoxy) diradical: an application of the sequential redox-solid state photolysis (SRSSP) method. Chem Lett 27:845–846CrossRefGoogle Scholar
  41. 41.
    Wittman JM, Hayoun R, Kaminsky W, Coggins MK, Mayer JM (2013) A C-C bonded phenoxyl radical dimer with a zero bond dissociation free energy. J Am Chem Soc 135:12956–12959CrossRefGoogle Scholar
  42. 42.
    Mayer U, Baumgärtel H, Zimmermann H (1966) Über biradikale, chinone und semichinone der imidazolyl-reihe. Angew Chem 78:303CrossRefGoogle Scholar
  43. 43.
    Okada K, Imamura K, Oda M, Kozaki M, Morimoto Y, Ishino K, Tashiro K (1998) Novel dimers of 2,2’-(m-phenylene)bis(4,5-diphenyl-1-imidazolyl) diradical. Chem Lett 27:891–892CrossRefGoogle Scholar
  44. 44.
    Okada K, Imamura K, Oda M, Kajiwara A, Kamachi M, Ishino K, Tashiro K, Kozaki M, Sato K, Takui T (1999) Structure and photolysis of the dimer of 2,2′-(m-phenylene)bis(4,5-diphenylimidazole-2-yl) diradical. Synth Met 103:2308–2309CrossRefGoogle Scholar
  45. 45.
    Kikuchi A, Iwahori F, Abe J (2004) Definitive evidence for the contribution of biradical character in a closed-shell molecule, derivative of 1,4-bis-(4,5-diphenylimidazol-2-ylidene)cyclohexa-2,5-diene. J Am Chem Soc 126:6526–6527CrossRefGoogle Scholar
  46. 46.
    Kikuchi A, Ito H, Abe J (2005) A new family of π-conjugated delocalized biradicals: electronic structures of 1,4-bis(2,5-diphenylimidazol-4-ylidene)cyclohexa-2,5-diene. J Phys Chem B 109:19448–19453CrossRefGoogle Scholar
  47. 47.
    Foti M, Ingold KU, Lusztyk J (1994) The surprisingly high reactivity of phenoxyl radicals. J Am Chem Soc 116:9440–9447CrossRefGoogle Scholar
  48. 48.
    Irie M (2000) Diarylethenes for memories and switches. Chem Rev 100:1685–1716CrossRefGoogle Scholar
  49. 49.
    Morita Y, Ueda A, Nishida S, Fukui K, Ise T, Shiomi D, Sato K, Takui T, Nakasuji K (2008) Curved aromaticity of a corannulene-based neutral radical: crystal structure and 3D unbalanced delocalization of spin. Angew Chem Int Ed 47:2035–2038CrossRefGoogle Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  1. 1.Department of Chemistry, School of Science and EngineeringAoyama Gakuin UniversitySagamiharaJapan

Personalised recommendations