Fluorescent Switchable Diarylethene Derivatives and Their Application to the Imaging of Living Cells

  • Yueyuan Mao
  • Tao Yi


In this chapter, our recent studies on fluorescent switchable diarylethene systems are reviewed. The nondestructive readout capability of the fluorescent signal was realized via the modulation of intermolecular interactions and the energy transfer process. The response of the fluorescent switches to light and chemical input, such as metal ions, DNA, or proteins, was developed. These light-triggered reversible switches have been used as probes for sensing biomolecules and for imaging living cells and may be applied to biomarkers to trace a specific physiological process and to realize high-resolution mapping of a specific biomolecule.


Diarylethene Fluorescence switch Nondestructive readout Sensor Cell imaging 



We are greatly indebted to our collaborators, i.e., the colleagues and students who have been engaged in the research work described here. We would like to gratefully acknowledge financial support from the National Basic Research Program of China (2013CB733700), the China National Funds for Distinguished Young Scientists (21125104) and the Program of Shanghai Subject Chief Scientist (12XD1405900).


  1. 1.
    Brown GH (1971) Photochromism. Wiley-Interscience, New YorkGoogle Scholar
  2. 2.
    Irie M, Fukaminato T, Matsuda K, Kobatake S (2014) Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem Rev 114:12174–12277CrossRefGoogle Scholar
  3. 3.
    Irie M, Mohri M (1988) Thermally irreversible photochromic systems. Reversible photocyclization of diarylethene derivatives. J Org Chem 53:803–808CrossRefGoogle Scholar
  4. 4.
    Vendrell M, Zhai D, Er JC, Chang YT (2012) Combinatorial strategies in fluorescent probe development. Chem Rev 112:4391–4420CrossRefGoogle Scholar
  5. 5.
    Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y (2010) New strategies for fluorescent probe design in medical diagnostic imaging. Chem Rev 110:2620–2640CrossRefGoogle Scholar
  6. 6.
    Kartha KK, Babu SS, Srinivasan S, Ajayaghosh A (2012) Attogram sensing of trinitrotoluene with a self-assembled molecular gelator. J Am Chem Soc 134:4834–4841CrossRefGoogle Scholar
  7. 7.
    Yuan J, Wen D, Gaponik N, Eychmüller A (2013) Enzyme-encapsulating quantum dot hydrogels and xerogels as biosensors: multifunctional platforms for both biocatalysis and fluorescent probing. Angew Chem Int Ed 52:976–979CrossRefGoogle Scholar
  8. 8.
    Yan Y, Deng K, Yu Z, Wei Z (2009) Tuning the supramolecular chirality of polyaniline by methyl substitution. Angew Chem Int Ed 48:2003–2006CrossRefGoogle Scholar
  9. 9.
    Helmich F, Lee CC, Schenning APHJ, Meijer EW (2010) Chiral memory via chiral amplification and selective depolymerization of porphyrin aggregates. J Am Chem Soc 132:16753–16755CrossRefGoogle Scholar
  10. 10.
    Cao X, Meng L, Li Z, Mao Y, Lan H, Chen L, Fan Y, Yi T (2014) Large red-shifted fluorescent emission via intermolecular π−π stacking in 4-ethynyl-1,8-naphthalimide-based supramolecular assemblies. Langmuir 30:11753–11760CrossRefGoogle Scholar
  11. 11.
    Yang H, Yi T, Zhou Z, Zhou Y, Wu J, Xu M, Li F, Huang C (2007) Switchable fluorescent organogels and mesomorphic superstructure based on naphthalene derivatives. Langmuir 23:8224–8230CrossRefGoogle Scholar
  12. 12.
    Shu T, Wu J, Lu M, Chen L, Yi T, Li F, Huang C (2008) Tunable red-green-blue fluorescent organogels on the basis of intermolecular energy transfer. J Mater Chem 18:886–893CrossRefGoogle Scholar
  13. 13.
    de Jong JJD, Lucas LN, Kellogg RM, van Esch JH, Feringa BL (2004) Reversible optical transcription of supramolecular chirality into molecular chirality. Science 304:278–281CrossRefGoogle Scholar
  14. 14.
    Wang S, Shen W, Feng Y, Tian H (2006) A multiple switching bisthienylethene and its photochromic fluorescent organogelator. Chem Commun 14:1497–1499CrossRefGoogle Scholar
  15. 15.
    Xiao S, Zou Y, Yu M, Yi T, Zhou Y, Li F, Huang C (2007) A photochromic fluorescent switch in an organogel system with non-destructive readout ability. Chem Commun 45:4758–4760CrossRefGoogle Scholar
  16. 16.
    Cao X, Zhou J, Zou Y, Zhang M, Yu X, Zhang S, Yi T, Huang C (2011) Fluorescence and morphology modulation in a photochromic diarylethene self-assembly system. Langmuir 27:5090–5097CrossRefGoogle Scholar
  17. 17.
    Mutai T, Satou H, Araki K (2005) Reproducible on-off switching of solid-state luminescence by controlling molecular packing through heat-mode interconversion. Nat Mater 4:685–687CrossRefGoogle Scholar
  18. 18.
    Kishimura A, Yamashita T, Yamaguchi K, Aida T (2005) Rewritable phosphorescent paper by the control of competing kinetic and thermodynamic self-assembling events. Nat Mater 4:546–549CrossRefGoogle Scholar
  19. 19.
    Hulvat JF, Sofos M, Tajima K, Stupp SI (2005) Self-assembly and luminescence of oligo(p-phenylene vinylene) amphiphiles. J Am Chem Soc 127:366–372CrossRefGoogle Scholar
  20. 20.
    Lim SJ, An BK, Jung SD, Chung MA, Park SY (2004) Photoswitchable organic nanoparticles and a polymer film employing multifunctional molecules with enhanced fluorescence emission and bistable photochromism. Angew Chem Int Ed 43:6346–6350CrossRefGoogle Scholar
  21. 21.
    Xiao S, Zou Y, Wu J, Zhou Y, Yi T, Li F, Huang C (2007) Hydrogen bonding assisted switchable fluorescence in self-assembled complexes containing diarylethene: controllable fluorescent emission in the solid state. J Mater Chem 17:2483–2489CrossRefGoogle Scholar
  22. 22.
    Auzel F (2004) Upconversion and anti-stokes processes with f and d ions in solids. Chem Rev 104:139–174CrossRefGoogle Scholar
  23. 23.
    Zhou J, Liu Z, Li F (2012) Upconversion nanophosphors for small-animal imaging. Chem Soc Rev 41:1323–1349CrossRefGoogle Scholar
  24. 24.
    Zhou Z, Xiao S, Xu J, Liu Z, Shi M, Li F, Yi T, Huang C (2006) Modulation of the photochromic property in an organoboron-based diarylethene by a fluoride ion. Org Lett 8:3911–3914CrossRefGoogle Scholar
  25. 25.
    Zhou Z, Hu H, Yang H, Yi T, Huang K, Yu M, Li F, Huang C (2008) Up-conversion luminescent switch based on photochromic diarylethene and rare-earth nanophosphors. Chem Commun 39:4786–4788CrossRefGoogle Scholar
  26. 26.
    Xiao S, Yi T, Li F, Huang C (2005) A multi-photo responsive photochromic dithienylethene containing coumarin derivative. Tetrahedron Lett 46:9009–9012CrossRefGoogle Scholar
  27. 27.
    Xiao S, Yi T, Zhou Y, Zhao Q, Li F, Huang C (2006) Multi-state molecular switches based on dithienylperfluorocyclopentene and imidazo 4,5-f 1,10 phenanthroline. Tetrahedron 62:10072–10078CrossRefGoogle Scholar
  28. 28.
    Zhou Z, Yang H, Shi M, Xiao S, Li F, Yi T, Huang C (2007) Photochromic organoboron-based dithienylcyclopentene modulated by fluoride and mercuric (II) ions. Chem Phys Chem 8:1289–1292CrossRefGoogle Scholar
  29. 29.
    Stephens DJ, Allan VJ (2003) Light microscopy techniques for live cell imaging. Science 300:82–86CrossRefGoogle Scholar
  30. 30.
    Yu M, Li F, Chen Z, Hu H, Zhan C, Yang H, Huang C (2009) Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors. Anal Chem 81:930–935CrossRefGoogle Scholar
  31. 31.
    Zhang M, Yu M, Li F, Zhu M, Li M, Gao Y, Li L, Liu Z, Zhang J, Zhang D, Yi T, Huang C (2007) A highly selective fluorescence turn-on sensor for cysteine/homocysteine and its application in bioimaging. J Am Chem Soc 129:10322–10323CrossRefGoogle Scholar
  32. 32.
    Dahan M, Lévi S, Luccardini C, Rostaing P, Riveau B, Triller A (2003) Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302:442–445CrossRefGoogle Scholar
  33. 33.
    Gao X, Cui Y, Levenson RM, Chung LWK, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotech 22:969–976CrossRefGoogle Scholar
  34. 34.
    Yu M, Zhao Q, Shi L, Li F, Zhou Z, Yang H, Yi T, Huang C (2008) Cationic iridium (iii) complexes for phosphorescence staining in the cytoplasm of living cells. Chem Commun 18:2115–2117CrossRefGoogle Scholar
  35. 35.
    Lan H, Wen Y, Shi Y, Liu K, Mao Y, Yi T (2014) Fluorescence turn-on detection of Sn2+ in live eukaryotic and prokaryotic cells. Analyst 139:5223–5229CrossRefGoogle Scholar
  36. 36.
    Wang Q, Li C, Zou Y, Wang H, Yi T, Huang C (2012) A highly selective fluorescence sensor for Tin (Sn4+) and its application in imaging live cells. Org Biomol Chem 10:6740–6746CrossRefGoogle Scholar
  37. 37.
    Al-Atar U, Fernandes R, Johnsen B, Baillie D, Branda NR (2009) A photocontrolled molecular switch regulates paralysis in a living organism. J Am Chem Soc 131:15966–15967CrossRefGoogle Scholar
  38. 38.
    Zou Y, Yi T, Xiao S, Li F, Li C, Gao X, Wu J, Yu M, Huang C (2008) Amphiphilic diarylethene as a photoswitchable probe for imaging living cells. J Am Chem Soc 130:15750–15751CrossRefGoogle Scholar
  39. 39.
    Zhao Q, Li F, Huang C (2010) Phosphorescent chemosensors based on heavy-metal complexes. Chem Soc Rev 39:3007–3030CrossRefGoogle Scholar
  40. 40.
    Tan W, Zhou J, Li F, Yi T, Tian H (2011) Visible light-triggered photoswitchable diarylethene-based iridium (III) complexes for imaging living cells. Chem Asian J 6:1263–1268CrossRefGoogle Scholar
  41. 41.
    Coronado E, Galán-Mascarós JR, Martí-Gastaldo C, Palomares E, Durrant JR, Vilar R, Gratzel M, Nazeeruddin MK (2005) Reversible colorimetric probes for mercury sensing. J Am Chem Soc 127:12351–12356CrossRefGoogle Scholar
  42. 42.
    Barboiu M, Prodi L, Montalti M, Zaccheroni N, Kyritsakas N, Lehn J-M (2004) Dynamic chemical devices: modulation of photophysical properties by reversible, ion-triggered, and proton-fuelled nanomechanical shape-flipping molecular motions. Chem Eur J 10:2953–2959CrossRefGoogle Scholar
  43. 43.
    Piao X, Zou Y, Wu J, Li C, Yi T (2009) Multiresponsive switchable diarylethene and its application in bioimaging. Org Lett 11:3818–3821CrossRefGoogle Scholar
  44. 44.
    Bush AI (2000) Metals and neuroscience. Curr Opin Chem Biol 4:184–191CrossRefGoogle Scholar
  45. 45.
    Komatsu K, Kikuchi K, Kojima H, Urano Y, Nagano T (2005) Selective zinc sensor molecules with various affinities for Zn2+, Revealing dynamics and regional distribution of synaptically released Zn2+ in hippocampal slices. J Am Chem Soc 127:10197–10204CrossRefGoogle Scholar
  46. 46.
    Lv G, Cui B, Lan H, Wen Y, Sun A, Yi T (2015) Diarylethene based fluorescent switchable probes for the detection of amyloid-β pathology in Alzheimer’s disease. Chem Commun 51:125–128CrossRefGoogle Scholar
  47. 47.
    Xu Y, Guo M, Li X, Malkovskiy A, Wesdemiotis C, Pang Y (2011) Formation of linear supramolecular polymers that is based on host–guest assembly in water. Chem Commun 47:8883–8885CrossRefGoogle Scholar
  48. 48.
    Mao Y, Liu K, Lv G, Wen Y, Zhu X, Lan H, Yi T (2015) CB[8] gated photochromism of a diarylethene derivative containing thiazole orange groups. Chem Commun 51:6667–6670CrossRefGoogle Scholar
  49. 49.
    Liu K, Wen Y, Shi T, Li Y, Li F, Zhao Y, Huang C, Yi T (2014) DNA gated photochromism and fluorescent switch in a thiazole orange modified diarylethene. Chem Commun 50:9141–9144CrossRefGoogle Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  1. 1.Department of Chemistry and Collaborative Innovation Center of Chemistry for Energy MaterialsFudan UniversityShanghaiChina

Personalised recommendations