Advertisement

Turn-On Mode Fluorescent Diarylethenes

  • Masakazu Morimoto
  • Masahiro Irie
Chapter

Abstract

Turn-on mode highly fluorescent photochromic chromophores, which are initially non-luminous under irradiation with visible light but activated to emit fluorescence upon irradiation with UV light, have been developed. The chromophores are sulfone derivatives of 1,2-bis(2-alkyl-1-benzothiophen-3-yl)perfluorocyclopentene. The open-ring isomers undergo photocyclization reactions to produce the fluorescent closed-ring isomers upon UV irradiation. The fluorescent property of the closed-ring isomers was dramatically improved by introducing short alkyl chain substituents at 2- and 2′-positions and aryl substituents at 6- and 6′-positions of both benzothiophene-1,1-dioxide groups. The photogenerated closed-ring isomers of 6 having phenyl rings and 10 having thiophene rings emit brilliant green and red-orange fluorescence (Φf = 0.87 (6) and 0.78 (10) in 1,4-dioxane), respectively. Visible-light responsive ability and water solubility, which are indispensable for the application to biological systems, have been provided to the fluorescent photochromic diarylethenes by modifying the central ethene bridge and introducing hydrophilic myo-inositol groups. The photoswitchable fluorescent molecules can be applied to single-molecule tracking in real time as well as to super-resolution fluorescence microscopy.

Keywords

Diarylethene Photochromism Fluorescence Water solubility Super-resolution fluorescence microscopy 

References

  1. 1.
    Lakowicz JR (2010) Principles of fluorescence spectroscopy, 3rd edn. Springer, New YorkGoogle Scholar
  2. 2.
    Moerner WE, Kador L (1989) Optical detection and spectroscopy of single molecules in a solid. Phys Rev Lett 62:2535–2538CrossRefGoogle Scholar
  3. 3.
    Betzig E, Chichester RJ (1993) Single molecules observed by near-field scanning optical microscopy. Science 262:1422–1425CrossRefGoogle Scholar
  4. 4.
    Rigler R, Oritt M, Basché T (2001) Single molecule spectroscopy. Nobel conference lectures. Springer-Verlag, BerlinGoogle Scholar
  5. 5.
    Thomas SW, Joly GD, Swager TM (2007) Chemical sensors based on amplifying fluorescent conjugated polymers. Chem Rev 107:1339–1386CrossRefGoogle Scholar
  6. 6.
    Chen X, Pradhan T, Wang F, Kim JS, Yoon J (2012) Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives. Chem Rev 112:1910–1956CrossRefGoogle Scholar
  7. 7.
    Wang XF, Herman B (eds) (1996) Fluorescence imaging spectroscopy and microscopy. John Wiley & Sons, New YorkGoogle Scholar
  8. 8.
    Ando R, Mizuno H, Miyawaki A (2004) Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science 306:1370–1373CrossRefGoogle Scholar
  9. 9.
    Stender AS, Marchuk K, Liu C, Sander S, Meyer MW, Smith EA, Neupane B, Wang G, Li J, Cheng J-X, Huang B, Fang N (2013) Single cell optical imaging and spectroscopy. Chem Rev 113:2469–2527CrossRefGoogle Scholar
  10. 10.
    Raymo FM (2013) Photoactivatable synthetic fluorophores. Phys Chem Chem Phys 15:14840–14850CrossRefGoogle Scholar
  11. 11.
    Irie M, Fukaminato T, Sasaki T, Tamai N, Kawai T (2002) Organic chemistry: a digital fluorescent molecular photoswitch. Nature 420:759–760CrossRefGoogle Scholar
  12. 12.
    Fukaminato T, Sasaki T, Kawai T, Tamai N, Irie M (2004) Digital photoswitching of fluorescence based on the photochromism of diarylethene derivatives at a single-molecule level. J Am Chem Soc 126:14843–14849CrossRefGoogle Scholar
  13. 13.
    Fukaminato T, Umemoto T, Iwata Y, Yokojima S, Yoneyama M, Nakamura S, Irie M (2007) Photochromism of diarylethene single molecules in polymer matrices. J Am Chem Soc 129:5932–5938CrossRefGoogle Scholar
  14. 14.
    Fukaminato T, Doi T, Tamaoki N, Okuno K, Ishibashi Y, Miyasaka H, Irie M (2011) Single-molecule fluorescence photoswitching of a diarylethene−perylenebisimide dyad: non-destructive fluorescence readout. J Am Chem Soc 133:4984–4990Google Scholar
  15. 15.
    Fukaminato T, Kobatake S, Kawai T, Irie M (2001) Three-dimensional erasable optical memory using a photochromic diarylethene single crystal as the recording medium. Proc Jpn Acad, Ser B 77:30–35CrossRefGoogle Scholar
  16. 16.
    Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645CrossRefGoogle Scholar
  17. 17.
    Hess ST, Girirajan TPK, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91:4258–4272CrossRefGoogle Scholar
  18. 18.
    Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Meth 3:793–796CrossRefGoogle Scholar
  19. 19.
    Sengupta P, van Engelenburg SB, Lippincott-Schwartz J (2014) Superresolution imaging of biological systems using photoactivated localization microscopy. Chem Rev 114:3189–3202CrossRefGoogle Scholar
  20. 20.
    J-i Hotta, Fron E, Dedecker P, Janssen KPF, Li C, Müllen K, Harke B, Bückers J, Hell SW, Hofkens J (2010) Spectroscopic rationale for efficient stimulated-emission depletion microscopy fluorophores. J Am Chem Soc 132:5021–5023CrossRefGoogle Scholar
  21. 21.
    Yagi K, Soong CF, Irie M (2001) Synthesis of fluorescent diarylethenes having a 2,4,5-triphenylimidazole chromophore. J Org Chem 66:5419–5423CrossRefGoogle Scholar
  22. 22.
    de Meijere A, Zhao L, Belov VN, Bossi M, Noltemeyer M, Hell SW (2007) 1,3-Bicyclo[1.1.1]pentanediyl: the shortest rigid linear connector of phenylated photochromic units and a 1,5-dimethoxy-9,10-di(phenylethynyl)anthracene fluorophore. Chem Eur J 13:2503–2516CrossRefGoogle Scholar
  23. 23.
    Ohara H, Morimoto M, Irie M (2010) Photochromism of dithienylethene single crystals having anthracene substituents. Photochem Photobiol Sci 9:1079–1081CrossRefGoogle Scholar
  24. 24.
    Jiang G, Wang S, Yuan W, Jiang L, Song Y, Tian H, Zhu D (2006) Highly fluorescent contrast for rewritable optical storage based on photochromic bisthienylethene-bridged naphthalimide dimer. Chem Mater 18:235–237CrossRefGoogle Scholar
  25. 25.
    Odo Y, Fukaminato T, Irie M (2007) Photoswitching of fluorescence based on intramolecular electron transfer. Chem Lett 36:240–241CrossRefGoogle Scholar
  26. 26.
    Berberich M, Krause A-M, Orlandi M, Scandola F, Würthner F (2008) Toward fluorescent memories with nondestructive readout: photoswitching of fluorescence by intramolecular electron transfer in a diaryl ethene-perylene bisimide photochromic system. Angew Chem Int Ed 47:6616–6619CrossRefGoogle Scholar
  27. 27.
    Pärs M, Hofmann CC, Willinger K, Bauer P, Thelakkat M, Köhler J (2011) An organic optical transistor operated under ambient conditions. Angew Chem Int Ed 50:11405–11408CrossRefGoogle Scholar
  28. 28.
    Golovkova TA, Kozlov DV, Neckers DC (2005) Synthesis and properties of novel fluorescent switches. J Org Chem 70:5545–5549CrossRefGoogle Scholar
  29. 29.
    Lord SJ, Conley NR, Lee HD, Samuel R, Liu N, Twieg RJ, Moerner WE (2008) A photoactivatable push−pull fluorophore for single-molecule imaging in live cells. J Am Chem Soc 130:9204–9205CrossRefGoogle Scholar
  30. 30.
    Deniz E, Tomasulo M, Cusido J, Yildiz I, Petriella M, Bossi ML, Sortino S, Raymo FM (2012) Photoactivatable fluorophores for super-resolution imaging based on oxazine auxochromes. J Phys Chem C 116:6058–6068CrossRefGoogle Scholar
  31. 31.
    Kobayashi T, Komatsu T, Kamiya M, Campos C, González-Gaitán M, Terai T, Hanaoka K, Nagano T, Urano Y (2012) Highly activatable and environment-insensitive optical highlighters for selective spatiotemporal imaging of target proteins. J Am Chem Soc 134:11153–11160CrossRefGoogle Scholar
  32. 32.
    Kobayashi T, Urano Y, Kamiya M, Ueno T, Kojima H, Nagano T (2007) Highly activatable and rapidly releasable caged fluorescein derivatives. J Am Chem Soc 129:6696–6697CrossRefGoogle Scholar
  33. 33.
    Fölling J, Belov V, Kunetsky R, Medda R, Schönle A, Egner A, Eggeling C, Bossi M, Hell SW (2007) Photochromic rhodamines provide nanoscopy with optical sectioning. Angew Chem Int Ed 46:6266–6270CrossRefGoogle Scholar
  34. 34.
    Thapaliya ER, Captain B, Raymo FM (2014) Photoactivatable anthracenes. J Org Chem 79:3973–3981CrossRefGoogle Scholar
  35. 35.
    Jeong Y-C, Yang SI, Ahn K-H, Kim E (2005) Highly fluorescent photochromic diarylethene in the closed-ring form. Chem Commun 2503–2505Google Scholar
  36. 36.
    Jeong Y-C, Yang SI, Kim E, Ahn K-H (2006) Development of highly fluorescent photochromic material with high fatigue resistance. Tetrahedron 62:5855–5861CrossRefGoogle Scholar
  37. 37.
    Jeong Y-C, Park DG, Lee IS, Yang SI, Ahn K-H (2009) Highly fluorescent photochromic diarylethene with an excellent fatigue property. J Mater Chem 19:97–103CrossRefGoogle Scholar
  38. 38.
    Uno K, Niikura H, Morimoto M, Ishibashi Y, Miyasaka H, Irie M (2011) In situ preparation of highly fluorescent dyes upon photoirradiation. J Am Chem Soc 133:13558–13564CrossRefGoogle Scholar
  39. 39.
    Takagi Y, Kunishi T, Katayama T, Ishibashi Y, Miyasaka H, Morimoto M, Irie M (2012) Photoswitchable fluorescent diarylethene derivatives with short alkyl chain substituents. Photochem Photobiol Sci 11:1661–1665CrossRefGoogle Scholar
  40. 40.
    Sumi T, Kaburagi T, Morimoto M, Une K, Sotome H, Ito S, Miyasaka H, Irie M (2015) Fluorescent photochromic diarylethene that turns on with visible light. Org Lett 17:4802–4805CrossRefGoogle Scholar
  41. 41.
    Sumi T, Takagi Y, Yagi A, Morimoto M, Irie M (2014) Photoirradiation wavelength dependence of cycloreversion quantum yields of diarylethenes. Chem Commun 50:3928–3930CrossRefGoogle Scholar
  42. 42.
    Hanazawa M, Sumiya R, Horikawa Y, Irie M (1992) Thermally irreversible photochromic systems. Reversible photocyclization of 1,2-bis (2-methylbenzo[b]thiophen-3-yl)perfluorocyclocoalkene derivatives. J Chem Soc Chem Commun 206–207Google Scholar
  43. 43.
    Irie M (2000) Diarylethenes for memories and switches. Chem Rev 100:1685–1716CrossRefGoogle Scholar
  44. 44.
    Irie M, Fukaminato T, Matsuda K, Kobatake S (2014) Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem Rev 114:12174–12277CrossRefGoogle Scholar
  45. 45.
    Shim S, Joo T, Bae SC, Kim KS, Kim E (2003) Ring opening dynamics of a photochromic diarylethene derivative in solution. J Phys Chem A 107:8106–8110CrossRefGoogle Scholar
  46. 46.
    Uchida K, Nakayama Y, Irie M (1990) Thermally irreversible photochromic systems. Reversible photocyclization of 1,2-bis(benzo[b]thiophen-3-yl)ethene derivatives. Bull Chem Soc Jpn 63:1311–1315CrossRefGoogle Scholar
  47. 47.
    Takeshita M, Irie M (1997) Enhancement of the photocyclization quantum yield of 2,2′-dimethyl-3,3′-(perfluorocyclopentene-1,2-diyl)bis(benzo[b]thiophene-6-sulfonate) by inclusion in a cyclodextrin cavity. Chem Commun 2265–2266Google Scholar
  48. 48.
    Matsuda K, Shinkai Y, Yamaguchi T, Nomiyama K, Isayama M, Irie M (2003) Very high cyclization quantum yields of diarylethene having two N-methylpyridinium ions. Chem Lett 32:1178–1179CrossRefGoogle Scholar
  49. 49.
    Díaz SA, Menéndez GO, Etchehon MH, Giordano L, Jovin TM, Jares-Erijman EA (2011) Photoswitchable water-soluble quantum dots: pcFRET based on amphiphilic photochromic polymer coating. ACS Nano 5:2795–2805CrossRefGoogle Scholar
  50. 50.
    Polyakova SM, Belov VN, Bossi ML, Hell SW (2011) Synthesis of photochromic compounds for aqueous solutions and focusable light. Eur J Org Chem 2011:3301–3312CrossRefGoogle Scholar
  51. 51.
    Shoji Y, Yagi A, Horiuchi M, Morimoto M, Irie M (2013) Photochromic diarylethene derivatives bearing hydrophilic substituents. Isr J Chem 53:303–311CrossRefGoogle Scholar
  52. 52.
    Takagi Y, Morimoto M, Kashihara R, Fujinami S, Ito S, Miyasaka H, Irie M (2017) Turn-on mode fluorescent diarylethenes: control of the cycloreversion quantum yield. Tetrahedron. doi: 10.1016/j.tet.2017.03.040
  53. 53.
    Nevskyi O, Sysoiev D, Oppermann A, Huhn T, Wöll D (2016) Nanoscopic visualization of soft matter using fluorescent diarylethene photoswitches. Angew Chem Int Ed 55:12698–12702Google Scholar
  54. 54.
    Roubinet B, Bossi ML, Alt P, Leutenegger M, Shojaei H, Schnorrenberg S, Nizamov S, Irie M, Belov VN, Hell SW (2016) Carboxylated photoswitchable diarylethenes for biolabeling and super-resolution RESOLFT microscopy. Angew Chem Int Ed 55:15429–15433Google Scholar
  55. 55.
    Arai Y, Ito S, Fujita H, Yoneda Y, Kaji T, Takei S, Kashihara R, Morimoto M, Irie M, Miyasaka H (2017) One-colour of activation, excitation and deactivation of a fluorescent diarylethene derivative in super-resolution microscopy. Chem Commun 53:4066–4069Google Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  1. 1.Department of Chemistry and Research Center for Smart MoleculesRikkyo UniversityTokyoJapan

Personalised recommendations