Strategies for Switching with Visible Light

Chapter

Abstract

Molecular photoswitches, which are able to reversibly interconvert between (at least) two (meta) stable isomers upon exposure to light, are key elements for the development of photo-responsive systems that offer promising perspectives in the materials and life sciences. One current limitation in the design of functional photo-responsive systems is the need to induce switching at least in one direction by UV light, which penetrates only partially through most media and instead leads to degradation. In this chapter, we provide a summary of the different conceptual strategies to operate molecular photoswitches solely in the visible and near-infrared regions of the optical spectrum. The covered visible light-activated molecular switches and the highlighted conceptual approaches will decisively advance the field of photo-switchable systems and facilitate their implementation into future applications and technologies.

Keywords

Photoswitches Photochromism Optical control Visible light Stimuli-responsive systems 

Notes

Acknowledgements

D.B. acknowledges generous support by the German Research Foundation (DFG via BL 1269/1-1), and S.H. is grateful to the European Research Council (ERC via ERC-2012-STG_308117 ‘‘Light4Function’’).

References

  1. 1.
    Briggs WR, Spudich JL (2005) Handbook of photosensory receptors. Wiley-VCH, WeinheimGoogle Scholar
  2. 2.
    Holick M, MacLaughlin J, Clark M, Holick S, Potts J, Anderson R, Blank I, Parrish J, Elias P (1980) Photosynthesis of previtamin D3 in human skin and the physiologic consequences. Science 210:203–205CrossRefGoogle Scholar
  3. 3.
    Stolik S, Delgado J, Pérez A, Anasagasti L (2000) Measurement of the penetration depths of red and near infrared light in human “ex vivo” tissues. J Photochem Photobiol B Biol 57:90–93CrossRefGoogle Scholar
  4. 4.
    Russew M-M, Hecht S (2010) Photoswitches: from molecules to materials. Adv Mater 22:3348–3360CrossRefGoogle Scholar
  5. 5.
    Finkelmann H, Nishikawa E, Pereira GG, Warner M (2001) A new opto-mechanical effect in solids. Phys Rev Lett 87:015501CrossRefGoogle Scholar
  6. 6.
    Kobatake S, Takami S, Muto H, Ishikawa T, Irie M (2007) Rapid and reversible shape changes of molecular crystals on photoirradiation. Nature 446:778–781CrossRefGoogle Scholar
  7. 7.
    Ube T, Ikeda T (2014) Photomobile polymer materials with crosslinked liquid-crystalline structures: molecular design, fabrication, and functions. Angew Chem Int Ed Engl 53:10290–10299CrossRefGoogle Scholar
  8. 8.
    Orgiu E, Crivillers N, Herder M, Grubert L, Pätzel M, Frisch J, Pavlica E, Duong DT, Bratina G, Salleo A, Koch N, Hecht S, Samorì P (2012) Optically switchable transistor via energy-level phototuning in a bicomponent organic semiconductor. Nat Chem 4:675–679CrossRefGoogle Scholar
  9. 9.
    El Gemayel M, Börjesson K, Herder M, Duong DT, Hutchison JA, Ruzié C, Schweicher G, Salleo A, Geerts Y, Hecht S, Orgiu E, Samorì P (2015) Optically switchable transistors by simple incorporation of photochromic systems into small-molecule semiconducting matrices. Nat Commun 6:6330CrossRefGoogle Scholar
  10. 10.
    Stoll RS, Hecht S (2010) Artificial light-gated catalyst systems. Angew Chem Int Ed Engl 49:5054–5075CrossRefGoogle Scholar
  11. 11.
    Göstl R, Senf A, Hecht S (2014) Remote-controlling chemical reactions by light: towards chemistry with high spatio-temporal resolution. Chem Soc Rev 43:1982–1996CrossRefGoogle Scholar
  12. 12.
    Beharry AA, Woolley GA (2011) Azobenzene photoswitches for biomolecules. Chem Soc Rev 40:4422–4437CrossRefGoogle Scholar
  13. 13.
    Szymański W, Beierle JM, Kistemaker HAV, Velema WA, Feringa BL (2013) Reversible photocontrol of biological systems by the incorporation of molecular photoswitches. Chem Rev 113:6114–6178CrossRefGoogle Scholar
  14. 14.
    Fehrentz T, Schönberger M, Trauner D (2011) Optochemical genetics. Angew Chem Int Ed Engl 50:12156–12182CrossRefGoogle Scholar
  15. 15.
    Velema WA, Szymanski W, Feringa BL (2014) Photopharmacology: beyond proof of principle. J Am Chem Soc 136:2178–2191CrossRefGoogle Scholar
  16. 16.
    Velema WA, van der Berg JP, Hansen MJ, Szymanski W, Driessen AJM, Feringa BL (2013) Optical control of antibacterial activity. Nat Chem 5:924–928CrossRefGoogle Scholar
  17. 17.
    Tsivgoulis GM, Lehn J-M (1997) Multiplexing optical systems: multicolor-bifluorescent-biredox photochromic mixtures. Adv Mater 9:627–630CrossRefGoogle Scholar
  18. 18.
    Siewertsen R, Neumann H, Buchheim-Stehn B, Herges R, Näther C, Renth F, Temps F (2009) Highly efficient reversible Z-E photoisomerization of a bridged azobenzene with visible light through resolved S(1)(n pi*) absorption bands. J Am Chem Soc 131:15594–15595CrossRefGoogle Scholar
  19. 19.
    Bandara HMD, Burdette SC (2012) Photoisomerization in different classes of azobenzene. Chem Soc Rev 41:1809–1825CrossRefGoogle Scholar
  20. 20.
    Hartley GS (1937) The Cis-form of Azobenzene. Nature 140:281CrossRefGoogle Scholar
  21. 21.
    Irie M, Fukaminato T, Matsuda K, Kobatake S (2014) Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem Rev 114:12174–12277CrossRefGoogle Scholar
  22. 22.
    Irie M, Mohri M (1988) Thermally irreversible photochromic systems. Reversible photocyclization of diarylethene derivatives. J Org Chem 53:803–808CrossRefGoogle Scholar
  23. 23.
    Bouas-Laurent H, Dürr H (2001) Organic photochromism (IUPAC technical report). Pure Appl Chem 73:639–665CrossRefGoogle Scholar
  24. 24.
    Thomas Bens A, Frewert D, Kodatis K, Kryschi C, Martin H-D, Trommsdorff HP (1998) Coupling of chromophores: carotenoids and photoactive diarylethenes—photoreactivity versus radiationless deactivation. Eur J Org Chem 1998:2333–2338CrossRefGoogle Scholar
  25. 25.
    Fredrich S, Göstl R, Herder M, Grubert L, Hecht S A new strategy to switch diarylethenes reliably with visible light in both directions. SubmittedGoogle Scholar
  26. 26.
    Fukaminato T, Hirose T, Doi T, Hazama M, Matsuda K, Irie M (2014) Molecular design strategy toward diarylethenes that photoswitch with visible light. J Am Chem Soc 136:17145–17154CrossRefGoogle Scholar
  27. 27.
    Unpublished dataGoogle Scholar
  28. 28.
    Yin R, Xu W, Kondo M, Yen C-C, Mamiya J, Ikeda T, Yu Y (2009) Can sunlight drive the photoinduced bending of polymer films? J Mater Chem 19:3141CrossRefGoogle Scholar
  29. 29.
    Zhou J, Li Y, Tang Y, Zhao F, Song X, Li E (1995) Detailed investigation on a negative photochromic spiropyran. J Photochem Photobiol A Chem 90:117–123CrossRefGoogle Scholar
  30. 30.
    Shiraishi Y, Itoh M, Hirai T (2010) Thermal isomerization of spiropyran to merocyanine in aqueous media and its application to colorimetric temperature indication. Phys Chem Chem Phys 12:13737–13745CrossRefGoogle Scholar
  31. 31.
    Irie M, Kato M (1985) Photoresponsive molecular tweezers. Photoregulated ion capture and release using thioindigo derivatives having ethylenedioxy side groups. J Am Chem Soc 107:1024–1028CrossRefGoogle Scholar
  32. 32.
    Mitchell RH (1999) The metacyclophanediene-dihydropyrene photochromic π switch. Eur J Org Chem 1999:2695–2703CrossRefGoogle Scholar
  33. 33.
    Hatano S, Horino T, Tokita A, Oshima T, Abe J (2013) Unusual negative photochromism via a short-lived imidazolyl radical of 1,1′-binaphthyl-bridged imidazole dimer. J Am Chem Soc 135:3164–3172CrossRefGoogle Scholar
  34. 34.
    Helmy S, Leibfarth FA, Oh S, Poelma JE, Hawker CJ, Read de Alaniz J (2014) Photoswitching using visible light: a new class of organic photochromic molecules. J Am Chem Soc 136:8169–8172CrossRefGoogle Scholar
  35. 35.
    Helmy S, Oh S, Leibfarth FA, Hawker CJ, Read de Alaniz J (2014) Design and synthesis of donor-acceptor stenhouse adducts: a visible light photoswitch derived from furfural. J Org Chem 79:11316–11329CrossRefGoogle Scholar
  36. 36.
    Duval H (1910) Recherches sur la benzidination. Bull Soc Chim Fr 7:727–732Google Scholar
  37. 37.
    Samanta S, Qin C, Lough AJ, Woolley GA (2012) Bidirectional photocontrol of peptide conformation with a bridged azobenzene derivative. Angew Chem Int Ed Engl 51:6452–6455CrossRefGoogle Scholar
  38. 38.
    Beharry AA, Sadovski O, Woolley GA (2011) Azobenzene photoswitching without ultraviolet light. J Am Chem Soc 133:19684–19687CrossRefGoogle Scholar
  39. 39.
    Bléger D, Schwarz J, Brouwer AM, Hecht S (2012) o-Fluoroazobenzenes as readily synthesized photoswitches offering nearly quantitative two-way isomerization with visible light. J Am Chem Soc 134:20597–20600CrossRefGoogle Scholar
  40. 40.
    Samanta S, Beharry AA, Sadovski O, McCormick TM, Babalhavaeji A, Tropepe V, Woolley GA (2013) Photoswitching azo compounds in vivo with red light. J Am Chem Soc 135:9777–9784CrossRefGoogle Scholar
  41. 41.
    Knie C, Utecht M, Zhao F, Kulla H, Kovalenko S, Brouwer AM, Saalfrank P, Hecht S, Bléger D (2014) Ortho-fluoroazobenzenes: visible light switches with very long-lived Z isomers. Chemistry 20:16492–16501CrossRefGoogle Scholar
  42. 42.
    Bushuyev OS, Tomberg A, Friščić T, Barrett CJ (2013) Shaping crystals with light: crystal-to-crystal isomerization and photomechanical effect in fluorinated azobenzenes. J Am Chem Soc 135:12556–12559CrossRefGoogle Scholar
  43. 43.
    Yang Y, Hughes RP, Aprahamian I (2012) Visible light switching of a BF2-coordinated azo compound. J Am Chem Soc 134:15221–15224CrossRefGoogle Scholar
  44. 44.
    Yang Y, Hughes RP, Aprahamian I (2014) Near-infrared light activated azo-BF2 switches. J Am Chem Soc 136:13190–13193CrossRefGoogle Scholar
  45. 45.
    Guo X, Zhou J, Siegler MA, Bragg AE, Katz HE (2015) Visible-light-triggered molecular photoswitch based on reversible E/Z isomerization of a 1,2-dicyanoethene derivative. Angew Chem Int Ed Engl 54:4782–4786CrossRefGoogle Scholar
  46. 46.
    Zhou J, Guo X, Katz HE, Bragg AE (2015) Molecular switching via multiplicity-exclusive E/Z photoisomerization pathways. J Am Chem Soc 137:10841–10850Google Scholar
  47. 47.
    Jukes RTF, Adamo V, Hartl F, Belser P, De Cola L (2004) Photochromic dithienylethene derivatives containing Ru(II) or Os(II) metal units. Sensitized photocyclization from a triplet state. Inorg Chem 43:2779–2792CrossRefGoogle Scholar
  48. 48.
    Yam VW-W, Ko C-C, Zhu N (2004) Photochromic and luminescence switching properties of a versatile diarylethene-containing 1,10-phenanthroline ligand and its rhenium(I) complex. J Am Chem Soc 126:12734–12735CrossRefGoogle Scholar
  49. 49.
    Indelli MT, Carli S, Ghirotti M, Chiorboli C, Ravaglia M, Garavelli M, Scandola F (2015) Triplet pathways in diarylethene photochromism: photophysical and computational study of dyads containing ruthenium (II) polypyridine and 1, 2-bis (2-methylbenzothiophene-3-yl) maleimide units. J Am Chem Soc 130:7286–7299Google Scholar
  50. 50.
    Murata R, Yago T, Wakasa M (2011) Cyclization reaction of diarylethene through the triplet excited state. Bull Chem Soc Jpn 84:1336–1338CrossRefGoogle Scholar
  51. 51.
    Herder M, Schmidt BM, Grubert L, Pätzel M, Schwarz J, Hecht S (2015) Improving the fatigue resistance of diarylethene switches. J Am Chem Soc 137:2738–2747CrossRefGoogle Scholar
  52. 52.
    Saltiel J, Chang DWL, Megarity ED, Rousseau AD, Shannon PT, Thomas B, Uriarte AK (1975) The triplet state in stilbene cis-trans photoisomerization. Pure Appl Chem 41:559–579CrossRefGoogle Scholar
  53. 53.
    Cnossen A, Hou L, Pollard MM, Wesenhagen PV, Browne WR, Feringa BL (2012) Driving unidirectional molecular rotary motors with visible light by intra- and intermolecular energy transfer from palladium porphyrin. J Am Chem Soc 134:17613–17619CrossRefGoogle Scholar
  54. 54.
    Venkataramani S, Jana U, Dommaschk M, Sönnichsen FD, Tuczek F, Herges R (2011) Magnetic bistability of molecules in homogeneous solution at room temperature. Science 331:445–448CrossRefGoogle Scholar
  55. 55.
    Cembran A, Bernardi F, Garavelli M, Gagliardi L, Orlandi G (2004) On the mechanism of the cis-trans isomerization in the lowest electronic states of azobenzene: S0, S1, and T1. J Am Chem Soc 126:3234–3243CrossRefGoogle Scholar
  56. 56.
    Wezenberg SJ, Chen K-Y, Feringa BL (2015) Visible-light-driven photoisomerization and increased rotation speed of a molecular motor acting as a ligand in a ruthenium(ii) complex. Angew Chem Int Ed Engl 54:11457–114561CrossRefGoogle Scholar
  57. 57.
    Singh-Rachford TN, Castellano FN (2010) Photon upconversion based on sensitized triplet–triplet annihilation. Coord Chem Rev 254:2560–2573CrossRefGoogle Scholar
  58. 58.
    Jiang Z, Xu M, Li F, Yu Y (2013) Red-light-controllable liquid-crystal soft actuators via low-power excited upconversion based on triplet–triplet annihilation. J Am Chem Soc 135:16446–16453CrossRefGoogle Scholar
  59. 59.
    Cui X, Zhao J, Zhou Y, Ma J, Zhao Y (2014) Reversible photoswitching of triplet-triplet annihilation upconversion using dithienylethene photochromic switches. J Am Chem Soc 136:9256–9259CrossRefGoogle Scholar
  60. 60.
    Wang F, Liu X (2009) Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem Soc Rev 38:976–989CrossRefGoogle Scholar
  61. 61.
    Carling C-J, Boyer J-C, Branda NR (2009) Remote-control photoswitching using NIR light. J Am Chem Soc 131:10838–10839CrossRefGoogle Scholar
  62. 62.
    Boyer J-C, Carling C-J, Gates BD, Branda NR (2010) Two-way photoswitching using one type of near-infrared light, upconverting nanoparticles, and changing only the light intensity. J Am Chem Soc 132:15766–15772CrossRefGoogle Scholar
  63. 63.
    Wang L, Dong H, Li Y, Xue C, Sun L-D, Yan C-H, Li Q (2014) Reversible near-infrared light directed reflection in a self-organized helical superstructure loaded with upconversion nanoparticles. J Am Chem Soc 136:4480–4483CrossRefGoogle Scholar
  64. 64.
    Carling C-J, Nourmohammadian F, Boyer J-C, Branda NR (2010) Remote-control photorelease of caged compounds using near-infrared light and upconverting nanoparticles. Angew Chem Int Ed Engl 49:3782–3785CrossRefGoogle Scholar
  65. 65.
    Yan B, Boyer J-C, Branda NR, Zhao Y (2011) Near-infrared light-triggered dissociation of block copolymer micelles using upconverting nanoparticles. J Am Chem Soc 133:19714–19717CrossRefGoogle Scholar
  66. 66.
    Wu W, Yao L, Yang T, Yin R, Li F, Yu Y (2011) NIR-light-induced deformation of cross-linked liquid-crystal polymers using upconversion nanophosphors. J Am Chem Soc 133:15810–15813CrossRefGoogle Scholar
  67. 67.
    Pawlicki M, Collins HA, Denning RG, Anderson HL (2009) Two-photon absorption and the design of two-photon dyes. Angew Chem Int Ed Engl 48:3244–3266CrossRefGoogle Scholar
  68. 68.
    Parthenopoulos DA, Rentzepis PM (1989) Three-dimensional optical storage memory. Science 245:843–845CrossRefGoogle Scholar
  69. 69.
    Moreno J, Gerecke M, Dobryakov AL, Ioffe IN, Granovsky AA, Bléger D, Hecht S, Kovalenko SA (2015) Two-photon-induced versus one-photon-induced isomerization dynamics of a bistable azobenzene derivative in solution. J Phys Chem B 119:12281–12288CrossRefGoogle Scholar
  70. 70.
    Feringa BL, Browne WR (eds) (2011) Molecular switches, 2nd edn. Wiley VCH, WeinheimGoogle Scholar
  71. 71.
    Tian H, Feng Y (2008) Next step of photochromic switches? J Mater Chem 18:1617CrossRefGoogle Scholar
  72. 72.
    Croissant J, Maynadier M, Gallud A, Peindy N’dongo H, Nyalosaso JL, Derrien G, Charnay C, Durand J-O, Raehm L, Serein-Spirau F, Cheminet N, Jarrosson T, Mongin O, Blanchard-Desce M, Gary-Bobo M, Garcia M, Lu J, Tamanoi F, Tarn D, Guardado-Alvarez TM, Zink JI (2013) Two-photon-triggered drug delivery in cancer cells using nanoimpellers. Angew Chem Int Ed Engl 52:13813–13817Google Scholar
  73. 73.
    Moreno J, Dobryakov AL, Ioffe IN, Granovsky AA, Hecht S, Kovalenko SA (2015) Broadband transient absorption spectroscopy with 1- and 2-photon excitations: Relaxation paths and cross sections of a triphenylamine dye in solution. J Chem Phys 143:024311CrossRefGoogle Scholar
  74. 74.
    Moreno J, Gerecke M, Grubert L, Kovalenko SA, Hecht S Sensitized two-NIR-photon Z → E isomerization of an all-visible and bistable azobenzene derivative. SubmittedGoogle Scholar
  75. 75.
    Mori K, Ishibashi Y, Matsuda H, Ito S, Nagasawa Y, Nakagawa H, Uchida K, Yokojima S, Nakamura S, Irie M, Miyasaka H (2011) One-color reversible control of photochromic reactions in a diarylethene derivative: three-photon cyclization and two-photon cycloreversion by a near-infrared femtosecond laser pulse at 1.28 μm. J Am Chem Soc 133:2621–2625CrossRefGoogle Scholar
  76. 76.
    Nakashima T, Kajiki Y, Fukumoto S, Taguchi M, Nagao S, Hirota S, Kawai T (2012) Efficient oxidative cycloreversion reaction of photochromic dithiazolythiazole. J Am Chem Soc 134:19877–19883CrossRefGoogle Scholar
  77. 77.
    Goulet-Hanssens A, Utecht M, Mutruc D, Titov E, Schwarz J, Grubert L, Bléger D, Saalfrank P, Hecht S (2017) Electrocatalytic Z → E isomerization of azobenzenes. J Am Chem Soc 139:335–341Google Scholar
  78. 78.
    Kishida M, Kusamoto T, Nishihara H (2014) Photoelectric signal conversion by combination of electron-transfer chain catalytic isomerization and photoisomerization on benzodimethyldihydropyrenes. J Am Chem Soc 136:4809–4812CrossRefGoogle Scholar
  79. 79.
    Herder M, Utecht M, Manicke N, Grubert L, Pätzel M, Saalfrank P, Hecht S (2013) Switching with orthogonal stimuli: electrochemical ring-closure and photochemical ring-opening of bis(thiazolyl)maleimides. Chem Sci 4:1028–1040CrossRefGoogle Scholar
  80. 80.
    Kurihara M, Hirooka A, Kume S, Sugimoto M, Nishihara H (2002) Redox-conjugated reversible isomerization of ferrocenylazobenzene with a single green light. J Am Chem Soc 124:8800–8801CrossRefGoogle Scholar
  81. 81.
    Lee S, You Y, Ohkubo K, Fukuzumi S, Nam W (2014) Highly efficient cycloreversion of photochromic dithienylethene compounds using visible light-driven photoredox catalysis. Chem Sci 5:1463CrossRefGoogle Scholar
  82. 82.
    Mourot A, Kienzler MA, Banghart MR, Fehrentz T, Huber FME, Stein M, Kramer RH, Trauner D (2011) Tuning photochromic ion channel blockers. ACS Chem Neurosci 2:536–543CrossRefGoogle Scholar
  83. 83.
    Hosono N, Yoshikawa M, Furukawa H, Totani K, Yamada K, Watanabe T, Horie K (2013) Photoinduced deformation of rigid azobenzene-containing polymer networks. Macromolecules 46:1017–1026CrossRefGoogle Scholar
  84. 84.
    Natansohn A, Rochon P (2002) Photoinduced motions in Azo-containing polymers. Chem Rev 102:4139–4176CrossRefGoogle Scholar
  85. 85.
    Goulet-Hanssens A, Corkery TC, Priimagi A, Barrett CJ (2014) Effect of head group size on the photoswitching applications of azobenzene disperse red 1 analogues. J Mater Chem C 2:7505CrossRefGoogle Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  1. 1.Department of ChemistryHumboldt Universität zu BerlinBerlinGermany

Personalised recommendations