Properties and Applications of Indolinooxazolidines as Photo-, Electro-, and Acidochromic Units

  • György Szalóki
  • Lionel Sanguinet


The aim of this chapter was to introduce the readers to indolinooxazolidines (IndOxa), a new family of molecular switches. First, in a short historical account their evolution is followed from their first appearance in the 1970s until today. The second section concentrates on the general structural features of the indolinooxazolidine motif, which are closely related to those of the spiropyrans. In the core of their chemistry lies the oxazolidine ring opening that is discussed in the following. Owing to the facility of the very same ring opening, they show chromophoric properties and can be addressed using different stimuli, such as light irradiation, change in electrical potential and pH. For this reason, the last three sections are devoted to provide a general understanding on their photo-, electro-, and acidochromic properties.


Indolinooxazolidine Photochromism Electrochromism Acidochromism Multistate switch Multimode switch Nonlinear optics 


  1. 1.
    Fritzsche J (1867) CR Acad Sci II(C):69Google Scholar
  2. 2.
    Bouas-Laurent H, Durr H (2001) Organic photochromism. Pure Appl Chem 73(4):639CrossRefGoogle Scholar
  3. 3.
    Baker EH, Tompkins FC, Fahim HA, Fleifel AM, Bergmann F, Kalmus A, Fischer E, Hirshberg Y, Arnstein HRV, Ward ER, Day LA, Bradley RS, Tadros W, Kamel M, Bailey AS, Bates DH, Ing HR, Warne MA, Neale E, Williams LTD, Henbest HB, Sharpe AG, Lamberton AH, Hart EP, Bunton CA, Halevi EA, Thurston JP, Walker J, Robinson RA, Mann FG, Smith BB, Hammick DL, Roe AM, Peat S, Whelan WJ, Thomas GJ (1952) Notes. J Chem Soc, p. 4518Google Scholar
  4. 4.
    Klajn R (2014) Spiropyran-based dynamic materials. Chem Soc Rev 43(1):148CrossRefGoogle Scholar
  5. 5.
    Lukyanov BS, Lukyanova MB (2005) Spiropyrans: synthesis, properties, and application. Chem Heterocycl Compd 41(3):281CrossRefGoogle Scholar
  6. 6.
    Ono J, Osada C, Kosuge K (1970) Photochromic spiro compounds. U.K. Patent GB 1186987Google Scholar
  7. 7.
    Schmitt E (1972) Basic indole dyes. Germany Patent DE2064882Google Scholar
  8. 8.
    Shachkus AA, Degutis YA, Urbonavichyus AG (1989) Synthesis and study of 5a,6-dihydro-12H-indolo[2,1-b][1, 3]-benzoxazines. Chem Heterocycl Compd 25(5):562CrossRefGoogle Scholar
  9. 9.
    Boehmke G, Schmitt E (1972) β-Hydroxyalkylated hydrazone dyestuffs. Germany Patent DE2122038Google Scholar
  10. 10.
    Schmitt E (1972) Indolenine dyes. Germany Patent DE2064881Google Scholar
  11. 11.
    Schmitt E (1972) Oxazoloindoles and their basic dye derivatives. Germany Patent DE2060614Google Scholar
  12. 12.
    Raue R, Kuhlthau HP (1981) Cationic alkylhydrazone dyes and their dye bases. Germany Patent US4376728Google Scholar
  13. 13.
    Zaitseva EL, Prokhoda AL, Kurkovskaya LN, Shifrina RR, Kardash NS, Drapkina DA, Krongauz VA (1973) Photochromy of organic substances. VI. Preparation of N-methacryloylhydroxyethyl derivatives of indoline spiropyrans. Khim Geterotsik l(10):1362Google Scholar
  14. 14.
    Hayami M, Torikoshi S (1976) Color-changing compounds. DE2541666A1Google Scholar
  15. 15.
    Kawami S, Yoshioka H, Nakatsu K, Okazaki T, Hayami M (1987) X-ray structures of electrochromic compounds. Colorless 3,3-dimethyl-2-(p-dimethylaminostyryl)indolino-[1,2-b]oxazoline and colored 2-(p-dimethylaminostyryl)-1-hydroxyethyl-3,3-dimethylindolinium bromide. Chem Lett 16(4):711CrossRefGoogle Scholar
  16. 16.
    Electrochromic display devices (1985). JP60057323AGoogle Scholar
  17. 17.
    Electrochromic display elements (1985). JP60057322AGoogle Scholar
  18. 18.
    Yamashita T, Tsuchiya S, Okazaki Y, Fujita H (1990) Guest-host liquid-crystal display device. JP02179618AGoogle Scholar
  19. 19.
    Sertova N, Nunzi JM, Petkov I, Deligeorgiev T (1998) Photochromism of styryl cyanine dyes in solution. J Photoch Photobio A 112(2,3):187Google Scholar
  20. 20.
    Minkin VI (2004) Photo-, thermo-, solvato-, and electrochromic spiroheterocyclic compounds. Chem Rev 104(5):2751CrossRefGoogle Scholar
  21. 21.
    Castet F, Ducasse L, Champagne B, Sanguinet L, Pozzo JL, Adamietz F, Rodriguez V (2005) Experimental and theoretical determination of the first-order hyperpolarizability of photo- and acidochromic indolino [2,1-b]oxazolidines. Synthetic Metals 155(2):393Google Scholar
  22. 22.
    Sanguinet L, Pozzo J-L, Rodriguez V, Adamietz F, Castet F, Ducasse L, Champagne B (2005) Acido- and phototriggered NLO properties enhancement. J Phys Chem B 109(22):11139CrossRefGoogle Scholar
  23. 23.
    Bertelson RC, Maeda S (1999) In: Crano JC, Guglielmetti RJ (eds) Organic photochromic and thermochromic compounds: main photochromic families, vol 1. Kluwer Academic Publishers, New York, p 17Google Scholar
  24. 24.
    Guglielmetti R (2003) 4n + 2 Systems: spiropyrans. In: Bouas-Laurent H, Dürr H (eds) Photochromism. Molecules and systems. Elsevier, Amsterdam, p 420Google Scholar
  25. 25.
    Sevez G (2009) Conception, synthèse et étude de nouveaux switches multimodulables. Thesis, Université Bordeaux 1Google Scholar
  26. 26.
    Bartnik R, Lesniak S, Mloston G, Zielinski T, Gebicki K (1990) Cationic dye derivatives of 1-(2-hydroxyethyl)-2-styryl-3,3-dimethyl-3H-indole. Chem Stos 34(3–4):325Google Scholar
  27. 27.
    Mançois F, Pozzo J-L, Pan J, Adamietz F, Rodriguez V, Ducasse L, Castet F, Plaquet A, Champagne B (2009) Two-way molecular switches with large nonlinear optical contrast. Chem-Eur J 15(11):2560CrossRefGoogle Scholar
  28. 28.
    Szalóki G, Sanguinet L (2015) Silica-mediated synthesis of indolinooxazolidine-based molecular switches. J Organ Chem 80(8):3949CrossRefGoogle Scholar
  29. 29.
    Sheng L, Li M, Zhu S, Li H, Xi G, Li Y-G, Wang Y, Li Q, Liang S, Zhong K, Zhang SX-A (2014) Hydrochromic molecular switches for water-jet rewritable paper. Nat Commun, vol 5Google Scholar
  30. 30.
    Kropp PJ, Daus KA, Tubergen MW, Kepler KD, Wilson VP, Craig SL, Baillargeon MM, Breton GW (1993) Surface-mediated reactions. 3. Hydrohalogenation of alkenes. J Am Chem Soc 115(8):3071CrossRefGoogle Scholar
  31. 31.
    Plos G (2007) Use of a composition comprising a styryl or imine type dye for coloring keratin fibers. FR2888747A1Google Scholar
  32. 32.
    Plos G (2008) Hair dye composition comprising a styryl or imine type dye and a thiol compound. WO2008043968A2Google Scholar
  33. 33.
    Plos G, Daubresse N (2009) Process for dyeing of keratin fibers by means of a disulfide/thiol styryl or imine type compound. FR2918667A1Google Scholar
  34. 34.
    Hirasawa Y (2010) Treatment of hair by styryl or imine compounds in the presence of organic or inorganic acids and zinc salts. WO2010128214A1Google Scholar
  35. 35.
    Qi QK, Fang XF, Liu YF, Zhou P, Zhang YM, Yang B, Tian WJ, Zhang SXA (2013) A TPE-oxazoline molecular switch with tunable multi-emission in both solution and solid state. RSC Adv 3(38):16986CrossRefGoogle Scholar
  36. 36.
    Li SH, Shang YL, Zhao EG, Kwok RTK, Lam JWY, Song YL, Tang BZ (2015) Color-tunable and highly solid emissive AIE molecules: synthesis, photophysics, data storage and biological application. J Mater Chem C 3(14):3445CrossRefGoogle Scholar
  37. 37.
    Yuan WZ, Chen S, Lam JWY, Deng C, Lu P, Sung HHY, Williams ID, Kwok HS, Zhang Y, Tang BZ (2011) Towards high efficiency solid emitters with aggregation-induced emission and electron-transport characteristics. Chem Commun 47(40):11216CrossRefGoogle Scholar
  38. 38.
    Zhao Z, Chen S, Chan CYK, Lam JWY, Jim CKW, Lu P, Chang Z, Kwok HS, Qiu H, Tang BZ (2012) A facile and versatile approach to efficient luminescent materials for applications in organic light-emitting diodes. Chem Asian J 7(3):484CrossRefGoogle Scholar
  39. 39.
    Zhao N, Li M, Yan Y, Lam JWY, Zhang YL, Zhao YS, Wong KS, Tang BZ (2013) A tetraphenylethene-substituted pyridinium salt with multiple functionalities: synthesis, stimuli-responsive emission, optical waveguide and specific mitochondrion imaging. J Mater Chem C 1(31):4640CrossRefGoogle Scholar
  40. 40.
    Zhao N, Yang Z, Lam JWY, Sung HHY, Xie N, Chen S, Su H, Gao M, Williams ID, Wong KS, Tang BZ (2012) Benzothiazolium-functionalized tetraphenylethene: an AIE luminogen with tunable solid-state emission. Chem Commun 48(69):8637CrossRefGoogle Scholar
  41. 41.
    Zhang X, Sheng L, Li M (2013) Novel repeatable water writing paper. CN103434309AGoogle Scholar
  42. 42.
    Petkov I, Charra F, Nunzi JM, Deligeorgiev T (2004) Photo- and thermoinduced ring opening reaction of 2[(1,3,3-trimethylindoline-2(1H)-yliden)propen-1-yl]-3,3-dimethylindolino[1,2-b]-oxazolidine in polymer films. Cent Eur J Chem 2(2):290Google Scholar
  43. 43.
    Petkov I, Charra F, Nunzi JM, Deligeorgiev T (1999) Photochemistry of 2-[(1,3,3-trimethylindoline-2(1H)-ylidene)propen-1-yl]-3,3-dimethylindolino[1,2-b]-oxazolidine in solution. J Photoch Photobio A 128(1–3):93CrossRefGoogle Scholar
  44. 44.
    Coe BJ (1999) Molecular materials possessing switchable quadratic nonlinear optical properties. Chem A Eur J 5(9):2464CrossRefGoogle Scholar
  45. 45.
    Castet F, Rodriguez V, Pozzo JL, Ducasse L, Plaquet A, Champagne B (2013) Design and characterization of molecular nonlinear optical switches. Acc Chem Res 46(11):2656CrossRefGoogle Scholar
  46. 46.
    Sekkat Z (2002) 8-Photoisomerization effects in organic nonlinear optics: photo-assisted poling and depoling and polarizability switching. In: Knoll ZS (ed) Photoreactive organic thin films. Academic Press, San Diego, p 271CrossRefGoogle Scholar
  47. 47.
    Irie M, Fukaminato T, Matsuda K, Kobatake S (2014) Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem Rev 114(24):12174CrossRefGoogle Scholar
  48. 48.
    Boixel J, Guerchais V, Le Bozec H, Jacquemin D, Amar A, Boucekkine A, Colombo A, Dragonetti C, Marinotto D, Roberto D, Righetto S, De Angelis R (2014) Second-order NLO switches from molecules to polymer films based on photochromic cyclometalated platinum(II) complexes. J Am Chem Soc 136(14):5367Google Scholar
  49. 49.
    Mancois F, Rodriguez V, Pozzo JL, Champagne B, Castet F (2006) Theoretical design of molecular photo- and acido-triggered non-linear optical switches. Chem Phys Lett 427(1–3):153CrossRefGoogle Scholar
  50. 50.
    Mancois F, Pozzo JL, Pan J, Adamietz F, Rodriguez V, Ducasse L, Castet F, Plaquet A, Champagne B (2009) Two-way molecular switches with large nonlinear optical contrast. Chem Eur J 15(11):2560CrossRefGoogle Scholar
  51. 51.
    Andreasson J, Pischel U (2010) Smart molecules at work-mimicking advanced logic operations. Chem Soc Rev 39(1):174CrossRefGoogle Scholar
  52. 52.
    Mrozek T, Görner H, Daub J (2001) Multimode-photochromism based on strongly coupled dihydroazulene and diarylethene. Chem Eur J 7(5):1028CrossRefGoogle Scholar
  53. 53.
    Mrozek T, Daub J, Gorner H (1999) Towards multifold cycloswitching of biphotochromes: investigation on a bond-fused dihydroazulene/vinylheptafulvene and dithienylethene/dihydrothienobenzothiophene. Chem Commun 16:1487CrossRefGoogle Scholar
  54. 54.
    Choi H, Ku B-S, Keum S-R, Ook Kang S, Ko J (2005) Selective photoswitching of a dyad with diarylethene and spiropyran units. Tetrahedron 61(15):3719CrossRefGoogle Scholar
  55. 55.
    Andréasson J, Pischel U, Straight SD, Moore TA, Moore AL, Gust D (2011) All-photonic multifunctional molecular logic device. J Am Chem Soc 133(30):11641CrossRefGoogle Scholar
  56. 56.
    Szalóki G, Sevez G, Berthet J, Pozzo J-L, Delbaere S (2014) A simple molecule-based octastate switch. J Am Chem Soc 136(39):13510CrossRefGoogle Scholar
  57. 57.
    Sevez G, Gan J, Delbaere S, Vermeersch G, Sanguinet L, Levillain E, Pozzo JL (2010) Photochromic performance of a dithienylethene-indolinooxazolidine hybrid. J Photoch Photobio A 9(2):131CrossRefGoogle Scholar
  58. 58.
    Jacquemin D, Perpete EA, Maurel F, Perrier A (2011) Photochromic properties of a dithienylethene-indolinooxazolidine switch: a theoretical investigation. Comput Theor Chem 963(1):63CrossRefGoogle Scholar
  59. 59.
    Zhi JF, Baba R, Fujishima A (1996) An electrochemical study of some spirobenzopyran derivatives in dimethylformamide. An electrochemical study of some spirobenzopyran derivatives in dimethylformamide, vol 100(11):1802Google Scholar
  60. 60.
    Preigh MJ, Stauffer MT, Lin FT, Weber SG (1996) Anodic oxidation mechanism of a spiropyran. J Chem Soc Faraday Trans 92(20):3991CrossRefGoogle Scholar
  61. 61.
    Ivashenko O, van HJT, Rudolf P, Feringa BL, Browne WR (2013) Oxidative electrochemical aryl C–C coupling of spiropyrans. Chem Commun 49(60):6737Google Scholar
  62. 62.
    Campredon M, Giusti G, Guglielmetti R, Samat A, Gronchi G, Alberti A, Benaglia M (1993) Radical ions and germyloxyaminoxyls from nitrospiro indoline-naphthopyrans -a combined electrochemical and EPR study. J Chem Soc Perk T 2(11):2089CrossRefGoogle Scholar
  63. 63.
    Hadji R, Szaloki G, Aleveque O, Levillain E, Sanguinet L (2015) The stepwise oxidation of indolino[2,1-b]oxazolidine derivatives. J Electroanal Chem 749:1CrossRefGoogle Scholar
  64. 64.
    Bunce NJ, Pilon P, Ruzo LO, Sturch DJ (1976) Electron transfer on photolysis of 1-chloronaphthalene in alkane solvents. J Org Chem 41(18):3023CrossRefGoogle Scholar
  65. 65.
    Ohashi M, Tsujimoto K (1983) Amine assisted photodechlorination of 4-chlorobiphenyl. a comment on the mechanism. Chem Lett 12(4):423Google Scholar
  66. 66.
    Chesta CA, Cosa JJ, Previtali CM (1986) The N,N-dimethylaniline-photosensitized dechlorination of chlorobenzenes. J Photochem 32(2):203Google Scholar
  67. 67.
    Szaloki G, Aleveque O, Pozzo JL, Hadji R, Levillain E, Sanguinet L (2015) Indolinooxazolidine: a versatile switchable unit. J Phys Chem B 119(1):307CrossRefGoogle Scholar
  68. 68.
    Bondu F, Hadji R, Szaloki G, Aleveque O, Sanguinet L, Pozzo J-L, Cavagnat D, Buffeteau T, Rodriguez V (2015) Huge electro-/photo-/acido-induced second-order nonlinear contrasts from multiaddressable indolinooxazolodine. J Phys Chem 119(22):6758Google Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  1. 1.Laboratoire MOLTECH-AnjouUniversité d’AngersAngers CedexFrance

Personalised recommendations