Advertisement

Photoswitchable Hybrid Nanosystems Based on Diarylethene Molecules and Gold Nanoparticles

  • Guillaume Laurent
  • François Maurel
  • Tsuyoshi Asahi
  • Keitaro Nakatani
  • Rémi Métivier
Chapter

Abstract

In this chapter, hybrid nanomaterials based on diarylethene molecules and gold nanoparticles (GNPs) are described. The interest of diarylethene derivatives incorporated in nanosystems and coupled to GNPs is first introduced. Different strategies to prepare hybrid nanosystems are then described, pointing out designs presenting specific merits and flaws. The photochromism-plasmonic coupling is presented, considering both units of the hybrid nanosystem. On the one hand, the photochromic reaction of the diarylethene molecules greatly modifies the surface plasmon resonance (SPR) mainly due to a change of the local refractive index. On the other hand, the enhanced electromagnetic field at the surface of the GNPs induces an enhancement of the photochromic kinetics under visible light irradiation. These cross talk interactions are also considered with the help of theoretical methods, providing new tools to investigate the molecular-plasmonic coupling. Such experimental and theoretical advances are very promising in the field of innovative and multifunctional hybrid nanomaterials.

Keywords

Diarylethene Surface plasmon Photochromism Plasmonic coupling Hybrid nanomaterials Gold nanoparticles 

Notes

Acknowledgements

The authors thank Agence Nationale de la Recherche (France) for funding through NanoPhotoSwitch and AZUR projects (K.N. and R.M.). This work was supported by JSPS, Grant-in-Aid for Scientific Research on Innovative Areas “Photosynergetics” (no. 26107008) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT). PHENICS network (CNRS GDRI), CNRS-JSPS program, SAKURA program (JSPS-Campus France), and ENS Cachan (invited professorship to T.A.) are acknowledged for supporting the collaboration.

References

  1. 1.
    Irie M, Fukaminato T, Matsuda K, Kobatake S (2014) Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem Rev 114:12174–12277CrossRefGoogle Scholar
  2. 2.
    Tagawa N, Masuhara A, Kasai H, Nakanishi H, Oikawa H (2010) Nanocrystallization of diarylethene and photochromic properties. Cryst Growth Des 10:2857–2859CrossRefGoogle Scholar
  3. 3.
    Tagawa N, Masuhara A, Onodera T, Kasai H, Oikawa H (2011) Polystyrene-encapsulated diarylethene nanocrystals by soap-free emulsion polymerization. J Mater Chem 21:7892CrossRefGoogle Scholar
  4. 4.
    Spangenberg A, Métivier R, Gonzalez J, Nakatani K, Yu P, Giraud M, Léaustic A, Guillot R, Uwada T, Asahi T (2009) Multiscale approach of photochromism: synthesis and photochromic properties of a diarylethene in solution, in nanoparticles, and in bulk crystals. Adv Mater 21:309–313CrossRefGoogle Scholar
  5. 5.
    Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830CrossRefGoogle Scholar
  6. 6.
    Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering. Phys Rev Lett 78:1667CrossRefGoogle Scholar
  7. 7.
    Nie S (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106CrossRefGoogle Scholar
  8. 8.
    Atay T, Song JH, Nurmikko AV (2004) Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime. Nano Lett 4:1627–1631CrossRefGoogle Scholar
  9. 9.
    Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sens Actuators B Chem 54:3–15CrossRefGoogle Scholar
  10. 10.
    Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (2002) Surface-enhanced Raman scattering and biophysics. J Phys Condens Matter 14:R597–R624CrossRefGoogle Scholar
  11. 11.
    Kudernac T, van der Molen SJ, van Wees BJ, Feringa BL (2006) Uni- and bi-directional light-induced switching of diarylethenes on gold nanoparticles. Chem Commun 3597–3599Google Scholar
  12. 12.
    Kudernac T, Katsonis N, Browne WR, Feringa BL (2009) Nano-electronic switches: light-induced switching of the conductance of molecular systems. J Mater Chem 19:7168CrossRefGoogle Scholar
  13. 13.
    Nishi H, Asahi T, Kobatake S (2011) Enhanced one-photon cycloreversion reaction of diarylethenes near individual gold nanoparticles. J Phys Chem C 115:4564–4570CrossRefGoogle Scholar
  14. 14.
    Yamaguchi H, Matsuda K, Irie M (2007) Excited-state behavior of a fluorescent and photochromic diarylethene on silver nanoparticles. J Phys Chem C 111:3853–3862CrossRefGoogle Scholar
  15. 15.
    Nishi H, Asahi T, Kobatake S (2012) Plasmonic enhancement of gold nanoparticles on photocycloreversion reaction of diarylethene derivatives depending on particle size, distance from the particle surface, and irradiation wavelength. Phys Chem Chem Phys 14:4898–4905CrossRefGoogle Scholar
  16. 16.
    Spangenberg A, Brosseau A, Métivier R, Sliwa M, Nakatani K, Asahi T, Uwada T (2007) Fabrication of nanoscale photochromic materials by vapor deposition method. J Phys Org Chem 20:985–991CrossRefGoogle Scholar
  17. 17.
    Spangenberg A, Métivier R, Yasukuni R, Shibata K, Brosseau A, Grand J, Aubard J, Yu P, Asahi T, Nakatani K (2013) Photoswitchable interactions between photochromic organic diarylethene and surface plasmon resonance of gold nanoparticles in hybrid thin films. Phys Chem Chem Phys 15:9670–9678CrossRefGoogle Scholar
  18. 18.
    Lequeux M, Grand J, Laurent G (2015) Importance of gold nanorods’ aggregation in surface plasmon coupling with a photochromic film in hybrid structures. Plasmonics 10:1863–1868CrossRefGoogle Scholar
  19. 19.
    Nishi H, Kobatake S (2008) Photochromism and optical property of gold nanoparticles covered with low-polydispersity diarylethene polymers. Macromolecules 41:3995–4002CrossRefGoogle Scholar
  20. 20.
    Nishi H, Asahi T, Kobatake S (2009) Light-controllable surface plasmon resonance absorption of gold nanoparticles covered with photochromic diarylethene polymers. J Phys Chem C 113:17359–17366CrossRefGoogle Scholar
  21. 21.
    Nishi H, Asahi T, Kobatake S (2011) Enhanced photocycloreversion reaction of diarylethene polymers attached to gold nanoparticles in the solid state. J Photochem Photobiol A 221:256–260CrossRefGoogle Scholar
  22. 22.
    Ouhenia-Ouadahi K, Yasukuni R, Yu P, Laurent G, Pavageau C, Grand J, Guerin J, Leaustic A, Felidj N, Aubard J, Nakatani K, Metivier R (2014) Photochromic-fluorescent-plasmonic nanomaterials: towards integrated three-component photoactive hybrid nanosystems. Chem Commun 50:7299–7302CrossRefGoogle Scholar
  23. 23.
    Pyykko P (2008) Theoretical chemistry of gold. III. Chem Soc Rev 37:1967–1997CrossRefGoogle Scholar
  24. 24.
    Hakkinen H (2008) Atomic and electronic structure of gold clusters: understanding flakes, cages and superatoms from simple concepts. Chem Soc Rev 37:1847–1859CrossRefGoogle Scholar
  25. 25.
    Idrobo JC, Walkosz W, Yip SF, Öğüt S, Wang J, Jellinek J (2007) Static polarizabilities and optical absorption spectra of gold clusters (Aun,n = 2–14 and 20) from first principles. Phys Rev B 76Google Scholar
  26. 26.
    Burgess RW, Keast VJ (2014) TDDFT study of the optical absorption spectra of bare gold clusters. J Phys Chem C 118:3194–3201CrossRefGoogle Scholar
  27. 27.
    Fihey A, Maurel F, Perrier A (2014) Modeling the absorbance properties of a pyrene chromophore grafted onto a Au25 nanocluster: a TD-DFT study. J Phys Chem C 118:4444–4453CrossRefGoogle Scholar
  28. 28.
    Asano Y, Murakami A, Kobayashi T, Goldberg A, Guillaumont D, Yabushita S, Irie M, Nakamura S (2004) Theoretical study on the photochromic cycloreversion reactions of dithienylethenes; on the role of the conical intersections. J Am Chem Soc 126:12112–12120CrossRefGoogle Scholar
  29. 29.
    Perrier A, Aloise S, Olivucci M, Jacquemin D (2013) Inverse versus normal dithienylethenes: computational investigation of the photocyclization reaction. J Phys Chem Lett 4:2190–2196CrossRefGoogle Scholar
  30. 30.
    Woodward RB, Hoffmann R (1965) Stereochemistry of electrocyclic reactions. J Am Chem Soc 87:395–397CrossRefGoogle Scholar
  31. 31.
    Fihey A, Kloss B, Perrier A, Maurel F (2014) Density functional theory study of the conformation and optical properties of hybrid Au(n)-dithienylethene systems (n = 3, 19, 25). J Phys Chem A 118:4695–4706CrossRefGoogle Scholar
  32. 32.
    Perrier A, Tesson S, Jacquemin D, Maurel F (2012) On the photochromic properties of dithienylethenes grafted on gold clusters. Comput Theor Chem 990:167–176CrossRefGoogle Scholar
  33. 33.
    Perrier A, Maurel F, Aubard J (2007) Theoretical study of the electronic and optical properties of photochromic dithienylethene derivatives connected to small gold clusters. J Phys Chem A 111:9688–9698CrossRefGoogle Scholar
  34. 34.
    Tsuboi Y, Shimizu R, Shoji T, Kitamura N (2009) Near-infrared continuous-wave light driving a two-photon photochromic reaction with the assistance of localized surface plasmon. J Am Chem Soc 131:12623–12627CrossRefGoogle Scholar
  35. 35.
    Tsuboi Y, Shimizu R, Shoji T, Kitamura N, Takase M, Murakoshi K (2011) Acceleration of a photochromic ring-opening reaction of diarylethene derivatives by excitation of localized surface plasmon. J Photochem Photobiol A 221:250–255CrossRefGoogle Scholar
  36. 36.
    Chen H, McMahon JM, Ratner MA, Schatz GC (2010) Classical electrodynamics coupled to quantum mechanics for calculation of molecular optical properties: a RT-TDDFT/FDTD approach. J Phys Chem C 114:14384–14392CrossRefGoogle Scholar
  37. 37.
    Fihey A, Maurel F, Perrier A (2015) Plasmon-excitation coupling for dithienylethene/gold nanoparticle hybrid systems: a theoretical study. J Phys Chem C 119:9995–10006CrossRefGoogle Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  • Guillaume Laurent
    • 1
  • François Maurel
    • 2
  • Tsuyoshi Asahi
    • 3
  • Keitaro Nakatani
    • 1
  • Rémi Métivier
    • 1
  1. 1.PPSM, ENS Cachan, CNRSUniversité Paris-SaclayCachanFrance
  2. 2.ITODYSUniversité Paris Diderot, CNRSParisFrance
  3. 3.Department of Materials Science and BiotechnologyEhime UniversityEhimeJapan

Personalised recommendations