New Strategies for Light-Induced Alignment and Switching in Liquid Crystalline Polymers



The photoalignment processes in liquid crystal films are based on the occurrence of angular selective photoreactions by linearly polarized light or oblique incidence of light. Alignment of nematic liquid crystals by a surface photoreactive layer has recently become of industrial importance in the fabrication of liquid crystal display panels due to the advantages of non-contact and fine resolution processing. Efforts in this field have also been extending to develop other types of procedures with various liquid crystalline materials. This chapter introduces some new trends in the photoalignment studies including systems of (i) lyotropic chromonic and organic–inorganic hybrids, (ii) block copolymer systems, and (iii) new methods utilizing the free (air) surface for inducing the alignment. These new strategies are expected to provide new directions of materials chemistry and phototechnologies.


Photoalignment Polarized light Azobenzene Organic–inorganic hybrids Block copolymers Free surface 



Grazing incidence—small angle X-ray scattering


Polarized optical microscopy



We thank the collaborators and students for their great efforts to the research projects. The projects described here were supported from the Grants-in-Aid for Scientific Research on Priority Area “New Frontiers in Photochromism” (471) and “Photosynergetics” (15H01084) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), the Grant-in-Aid for Scientific Research (S) (23225003) to TS, and (B) (25286025) to SN, and the Grant-in-Aid for Young Researcher (B) (25810117) to MH of the Japan Society for the Promotion of Sciences (JSPS). The synchrotron in situ X-ray measurements was conducted at Tsukuba KEK-Photon Factory (proposal No. 2012G629), and we are greatly indebted to Profs. Y. Amemiya and Y. Shinohara of the University of Tokyo in these measurements.


  1. 1.
    Ichimura K, Suzuki Y, Seki T, Hosoki A, Aoki K (1988) Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer. Langmuir 4:1214–1216CrossRefGoogle Scholar
  2. 2.
    Gibbons WM, Shannon PJ, Sun S-T, Swetlin BJ (1991) Surface-mediated alignment of nematic liquid crystals with polarized laser light. Nature 351:49–50CrossRefGoogle Scholar
  3. 3.
    Dyadyusha A, Kozinkov V, Marusii T, Reznikov Y, Reshetnyak V, Khizhnyak A (1991) Optically induced planar orientation of nematic liquid crystals on anisotropic surfaces without microrelief. Ukr Fiz Zh 36:1059–1062Google Scholar
  4. 4.
    Schadt M, Schmitt K, Kozinkov V, Chigrinov V (1992) Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers. Jpn J Appl Phys 31(Part 1):2155–2164Google Scholar
  5. 5.
    Kawanishi Y, Tamaki T, Sakuragi M, Seki T, Suzuki Y, Ichimura K (1992) Photochemical induction and modulation of nematic homogeneous alignment by the polarization photochromism of surface azobenzenes. Langmuir 8:2601–2604CrossRefGoogle Scholar
  6. 6.
    Weigert F (1921) Über einen neuen Effekt der Strahlung. Naturwissenschafen 9:583–588CrossRefGoogle Scholar
  7. 7.
    Todorov T, Nikolova L, Tomova N (1984) Polarization holography. 1: a new high-efficiency organic material with reversible photoinduced birefringence. Appl Opt 23:4309–4312CrossRefGoogle Scholar
  8. 8.
    Eich M, Wendorff JH, Reck B, Ringsdorf H (1987) Reversible digital and holographic optical storage in polymeric liquid crystals. Makromol Chem, Rapid Commun 8:59–63CrossRefGoogle Scholar
  9. 9.
    Eich M, Wendorff JH (1987) Erasable holograms in polymeric liquid crystals. Die Makromol Chem Rapid Commun 8:467–471CrossRefGoogle Scholar
  10. 10.
    Miyachi K, Kobayashi K, Yamada Y, Mizushima S (2010) The world’s first photo alignment LCD technology applied to generation ten factory. SID Symp Dig Tech Papers 41:579–582CrossRefGoogle Scholar
  11. 11.
    Kunimatsu N, Sonoda H, Hyodo Y, Tomioka Y (2014) Photoalignment technology for high performance IPS-LCDs: IPS-NEO technology. SID Symp Dig Tech Papers 45:1406–1409CrossRefGoogle Scholar
  12. 12.
    Ichimura K (2000) Photoalignment of liquid-crystal systems. Chem Rev 100:1847–1873CrossRefGoogle Scholar
  13. 13.
    O’Neill M, Kelly SM (2000) Photoinduced surface alignment for liquid crystal displays. J Phys D Appl Phys 33:R67–R84CrossRefGoogle Scholar
  14. 14.
    Hoogboom J, Rasing T, Rowan AE, Nolte RJM (2006) LCD alignment layers. Controlling nematic domain properties. J Mater Chem 16:1305–1314CrossRefGoogle Scholar
  15. 15.
    Yaroshchuk O, Reznikov Y (2012) Photoalignment of liquid crystals: basics and current trends. J Mater Chem 22:286–300CrossRefGoogle Scholar
  16. 16.
    Hoogboom J, Elemans JAAW, Rasing T, Rowan AE, Nolte RJM (2007) Supramolecular command surfaces for liquid crystal alignment. Polym Int 56:1186–1191CrossRefGoogle Scholar
  17. 17.
    Ercole F, Davis TP, Evans RA (2010) Photo-responsive systems and biomaterials: photochromic polymers, light-triggered self-assembly, surface modification, fluorescence modulation and beyond. Polym Chem 1:37–54CrossRefGoogle Scholar
  18. 18.
    Chigrinov V, Kozenkov VM, Kwok H-S (2008) Photoalignment of liquid crystalline materials. SID series in display technology. John Wiley & Sons, West SussexCrossRefGoogle Scholar
  19. 19.
    Seki T (2014) Meso- and microscopic motions in photoresponsive liquid crystalline polymer films. Macromol Rapid Commun 35:271–290CrossRefGoogle Scholar
  20. 20.
    Seki T (2014) New strategies and implications for the photoaligment of liquid crystalline polymers. Polym J 46:751–768CrossRefGoogle Scholar
  21. 21.
    Lydon J (2004) Chromonic mesophases. Curr Opin Colloid Interface Sci 8:480–490CrossRefGoogle Scholar
  22. 22.
    Lydon J (2010) Chromonic review. J Mater Chem 20:10071–10099CrossRefGoogle Scholar
  23. 23.
    Ichimura K, Momose M, Kudo K, Akiyama H, Ishizuki N (1995) Surface-assisted photolithography to form anisotropic dye layers as a new horizon of command surfaces. Langmuir 11:2341–2343CrossRefGoogle Scholar
  24. 24.
    Ruslim C, Matsunaga D, Hashimoto M, Tamaki T, Ichimura K (2003) Structural characteristics of the chromonic mesophases of C.I. direct blue 67. Langmuir 19:3686–3691CrossRefGoogle Scholar
  25. 25.
    Ichimura K, Fujiwara T, Momose M, Matsunaga D (2002) Surface-assisted photoalignment control of lyotropic liquid crystals. Part 1. Characterisation and photoalignment of aqueous solutions of a water-soluble dye as lyotropic liquid crystals. J Mater Chem 12:3380–3386CrossRefGoogle Scholar
  26. 26.
    Fujiwara T, Ichimura K (2002) Surface-assisted photoalignment control of lyotropic liquid crystals. Part 2. Photopatterning of aqueous solutions of a water-soluble anti-asthmatic drug as lyotropic liquid crystals. J Mater Chem 12:3387–3391CrossRefGoogle Scholar
  27. 27.
    Matsunaga D, Tamaki T, Akiyama H, Ichimura K (2002) Photofabrication of micro-patterned polarizing elements for stereoscopic displays. Adv Mater 14:1477–1480CrossRefGoogle Scholar
  28. 28.
    Ruslim C, Hashimoto M, Matsunaga D, Tamaki T, Ichimura K (2004) Optical and surface morphological properties of polarizing films fabricated from a chromonic dye by the photoalignment technique. Langmuir 20:95–100CrossRefGoogle Scholar
  29. 29.
    Chaplanova ZD, Murauski AA, Rogachev AA, Agabekov VE, Gracheva EA (2013) Multi-layered anisotropic films based on the azo dye brilliant yellow and organic polymers. J Appl Spectrosc 80:658–662CrossRefGoogle Scholar
  30. 30.
    Matsumori M, Takahashi A, Tomioka Y, Hikima T, Takata M, Kajitani T, Fukushima T (2015) Photoalignment of an azobenzene-based chromonic liquid crystal dispersed in triacetyl cellulose: single-layer alignment films with an exceptionally high order parameter. ACS Appl Mater Interfaces 7:11074–11078CrossRefGoogle Scholar
  31. 31.
    Yanagisawa T, Shimizu T, Kuroda K, Kato C (1990) The preparation of Alkyltrimethylammonium-Kanenite complexes and their conversion to microporous materials. Bull Chem Soc Jpn 63:988–992CrossRefGoogle Scholar
  32. 32.
    Wan Y, Zhao D (2007) On the controllable soft-templating approach to mesoporous silicates. Chem Rev 107:2821–2860CrossRefGoogle Scholar
  33. 33.
    Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712CrossRefGoogle Scholar
  34. 34.
    Kawashima Y, Nakagawa M, Ichimura K, Seki T (2004) Photo-orientation of mesoporous silica materials via transfer from azobenzene-containing polymer monolayer. J Mater Chem 14:328–335CrossRefGoogle Scholar
  35. 35.
    Kawashima Y, Nakagawa M, Seki T, Ichimura K (2002) Photoorientation of mesostructured silica via hierarchical multiple transfer. Chem Mater 14:2842–2844CrossRefGoogle Scholar
  36. 36.
    Fukumoto H, Nagano S, Kawatsuki N, Seki T (2005) Photo-orientation of mesoporous silica thin films on photo-crosslinkable polymer film. Adv Mater 17:1035–1039CrossRefGoogle Scholar
  37. 37.
    Fukumoto H, Nagano S, Kawatsuki N, Seki T (2006) Photoalignment behavior of mesoporous silica thin films synthesized on a photo-crosslinkable polymer film. Chem Mater 18:1226–1234CrossRefGoogle Scholar
  38. 38.
    Fukumoto H, Nagano S, Seki T (2006) Polymerization of liquid crystalline monomers within photo-aligned mesoporous silica thin film. Chem Lett 35:180–181CrossRefGoogle Scholar
  39. 39.
    Kawatsuki N, Kawakami T, Yamamoto T (2001) A photoinduced birefringent film with a high orientational order obtained from a novel polymer liquid crystal. Adv Mater 13:1337–1339CrossRefGoogle Scholar
  40. 40.
    Hara M, Nagano S, Mizoshita N, Seki T (2007) Chromonic/silica nanohybrids. Synthesis macroscopic alignment. Langmuir 23:12350–12355CrossRefGoogle Scholar
  41. 41.
    Hara M, Nagano S, Kawatsuki N, Seki T (2008) Photoalignment and patterning of chromonic/silica nanohybrid on photocrosslinkable polymer thin film. J Mater Chem 18(3259–32):63Google Scholar
  42. 42.
    Seki T, Nagano S, Hara M (2013) Versatility of photoalignment techniques: from nematics to a wide range of functional materials. Polymer 54:6053–6072CrossRefGoogle Scholar
  43. 43.
    Hara M, Nagano S, Seki T (2010) π–π interaction-induced vertical alignment of silica mesochannels templated by a discotic lyotropic liquid crystal. J Am Chem Soc 132:13654–13656CrossRefGoogle Scholar
  44. 44.
    Hara M, Nagano S, Seki T (2013) Spontaneous formation of vertically aligned lamellae in thin films of block copolymer-silica hybrid material. Bull Chem Soc Jpn 86:1151–1157CrossRefGoogle Scholar
  45. 45.
    Lazzari M, Liu G, Recommandoux S (2006) Block copolymer in nanoscience. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  46. 46.
    Hamley IM (2004) Developments in block copolymers science and technology. John Wiley & Sons, West SussexCrossRefGoogle Scholar
  47. 47.
    Tsui OK, Russell TP (eds) (2009) Polymer thin films. World Scientific Publishing, SingaporeGoogle Scholar
  48. 48.
    Yamada M, Hirao A, Nakahama S, Iguchi T, Watanabe J (1995) Synthesis of side-chain liquid crystalline homopolymers and block copolymers with well-defined structures by living anionic polymerization and their thermotropic phase behavior. Macromolecules 28:50–58CrossRefGoogle Scholar
  49. 49.
    Mao G, Ober CK (1997) Block copolymers containing liquid crystalline segments. Acta Polym 48:405–422CrossRefGoogle Scholar
  50. 50.
    Tian Y, Watanabe K, Kong X, Abe J, Iyoda T (2002) Synthesis, nanostructures, and functionality of amphiphilic liquid crystalline block copolymers with azobenzene moieties. Macromolecules 35:3739–3747CrossRefGoogle Scholar
  51. 51.
    Zhao Y, Qi B, Tong X, Zhao Y (2008) Synthesis of double side-chain liquid crystalline block copolymers using RAFT polymerization and the orientational cooperative effect. Macromolecules 41:3823–3831CrossRefGoogle Scholar
  52. 52.
    Morikawa Y, Nagano S, Watanabe K, Kamata K, Iyoda T, Seki T (2006) Optical alignment and patterning of nanoscale microdomains in a block copolymer thin film. Adv Mater 18:883–886CrossRefGoogle Scholar
  53. 53.
    Morikawa Y, Kondo T, Nagano S, Seki T (2007) Photoinduced 3D ordering and patterning of microphase-separated nanostructure in polystyrene-based block copolymer. Chem Mater 19:1540–1542CrossRefGoogle Scholar
  54. 54.
    Yu H, Iyoda T, Ikeda T (2006) Photoinduced alignment of nanocylinders by supramolecular cooperative motions. J Am Chem Soc 128:11010–11011CrossRefGoogle Scholar
  55. 55.
    Yu H, Asaoka S, Shishido A, Iyoda T, Ikeda T (2007) Photoinduced nanoscale cooperative motion in a well-defined triblock copolymer. Small 3:768–771CrossRefGoogle Scholar
  56. 56.
    Yu H, Kobayashi T, Hu G-H (2011) Photocontrolled microphase separation in a nematic liquid–crystalline diblock copolymer. Polymer 52:1554–1561CrossRefGoogle Scholar
  57. 57.
    Yu H, Kobayashi T, Yang H (2011) Liquid-crystalline ordering helps block copolymer self-assembly. Adv Mater 23:3337–3344CrossRefGoogle Scholar
  58. 58.
    Han D, Tong X, Zhao Y, Zhao Y (2010) Block copolymers comprising π-conjugated and liquid crystalline subunits: induction of macroscopic nanodomain orientation. Angew Chem Int Ed 49:9162–9165CrossRefGoogle Scholar
  59. 59.
    Nagano S, Koizuka Y, Murase T, Sano M, Shinohara Y, Amemiya Y, Seki T (2012) Synergy effect on morphology switching: real-time observation of photo-orientation of microphase separation in a block copolymer. Angew Chem Int Ed 51:5884–5888CrossRefGoogle Scholar
  60. 60.
    Sano M, Nakamura S, Hara M, Nagano S, Shinohara Y, Amemiya Y, Seki T (2014) Pathways toward photoinduced alignment switching in liquid crystalline block copolymer films. Macromolecules 47:7178–7186CrossRefGoogle Scholar
  61. 61.
    Sano M, Hara M, Nagano S, Shinohara Y, Amemiya Y, Seki T (2015) New aspects for the hierarchical cooperative motions in photoalignment process of liquid crystalline block copolymer films. Macromolecules 48:2217–2223CrossRefGoogle Scholar
  62. 62.
    Sano M, Shan F, Hara M, Nagano S, Shinohara Y, Amemiya Y, Seki T (2015) Dynamic photoinduced realignment processes in photoresponsive block copolymer films: effects of the chain length and block copolymer architecture. Soft Matter 11:5918–5925CrossRefGoogle Scholar
  63. 63.
    Fukuhara K, Fujii Y, Nagashima Y, Hara M, Nagano S, Seki T (2013) Liquid-crystalline polymer and block copolymer domain alignment controlled by free-surface segregation. Angew Chem Int Ed 52:5988–5991CrossRefGoogle Scholar
  64. 64.
    Fukuhara K, Hara M, Nagano S, Seki T (2014) Free surface-induced planar orientation in liquid crystalline block copolymer films: on the design of additive Surface active polymer layer. Mol Cryst Liq Cryst 601:11–19CrossRefGoogle Scholar
  65. 65.
    Fukuhara K, Nagano S, Hara M, Seki T (2014) Free-surface molecular command systems for photoalignment of liquid crystalline materials. Nat Commun 5:3320CrossRefGoogle Scholar
  66. 66.
    Kawata K (2002) Orientation control and fixation of discotic liquid crystal. Chem Rec 2:59–80CrossRefGoogle Scholar
  67. 67.
    Komura M, Yoshitake A, Komiyama H, Iyoda T (2015) Control of air-interface-induced perpendicular nanocylinder orientation in liquid crystal block copolymer films by a surface-covering method. Macromolecules 48:672–678CrossRefGoogle Scholar
  68. 68.
    Bates CM, Seshimo T, Maher MJ, Durand WJ, Cushen JD, Dean LM, Blachut G, Ellison C, Willson CG (2012) Polarity-switching top coats enable orientation of sub-10-nm block copolymer domains. Science 338:775–779CrossRefGoogle Scholar
  69. 69.
    Ma J, Hashimoto K, Koganezawa T, Tajima K (2013) End-On orientation of semiconducting polymers in thin films induced by surface segregation of fluoroalkyl chains. J Am Chem Soc 135:9644–9647CrossRefGoogle Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  1. 1.Department of Molecular Design and Engineering, Graduate School of EngineeringNagoya UniversityNagoyaJapan
  2. 2.Nagoya University Venture Business LaboratoryNagoyaJapan

Personalised recommendations