Skip to main content

Cooperative Self-assembly of Photochromic Diarylethenes at Liquid/Solid Interface and Highly Sensitive Photoinduced Transformation of the Ordering

  • Chapter
  • First Online:

Abstract

In this chapter, self-assembly of photochromic diarylethene at liquid/solid interface and photoinduced transformation of the ordering are described. Using scanning tunneling microscopy, the process of assembly can be studied at the molecular resolution. By the measurement of concentration dependence of surface coverage and the introduction of cooperative adsorption model, the degree of cooperativity in the self-assembly process can be evaluated and the guiding principle for highly sensitive photoresponsive system can be obtained. It is demonstrated that the precise control of the self-assembly process on 2D surface becomes possible by the careful design of the molecular structure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Barth JV, Costantini G, Kern K (2005) Engineering atomic and molecular nanostructures at surfaces. Nature 437:671–679

    Article  CAS  Google Scholar 

  2. Joachim C, Ratner MA (2005) Molecular electronics: some views on transport junctions and beyond. Proc Natl Acad Sci USA 102:8801–8802

    Article  CAS  Google Scholar 

  3. Moth-Poulsen K, Bjørnholm T (2009) Molecular electronics with single molecules in solid-state devices. Nat Nanotechnol 4:551–556

    Article  CAS  Google Scholar 

  4. Feringa BL, Browne WR (eds) (2011) Molecular switches, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  5. Irie M, Fukaminato T, Matsuda K, Kobatake S (2014) Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem Rev 114:12174–12277

    Article  CAS  Google Scholar 

  6. Rabe JP, Buchholz S (1991) Commensurability and mobility in two-dimensional molecular patterns on graphite. Science 253:424–427

    Article  CAS  Google Scholar 

  7. Palma CA, Cecchini M, Samorì P (2012) Predicting self-assembly: from empirism to determinism. Chem Soc Rev 41:3713–3730

    Article  CAS  Google Scholar 

  8. Elemans JAAW, Lei S, De Feyter S (2009) Molecular and supramolecular networks on surfaces: from two-dimensional crystal engineering to reactivity. Angew Chem Int Ed 48:7298–7332

    Article  CAS  Google Scholar 

  9. De Feyter S, De Schryver FC (2003) Two-dimensional supramolecular self-assembly probed by scanning tunneling microscopy. Chem Soc Rev 32:139–150

    Article  Google Scholar 

  10. Xue Y, Zimmt MB (2012) Patterned monolayer self-assembly programmed by side chain shape: four-component gratings. J Am Chem Soc 134:4513–4516

    Article  CAS  Google Scholar 

  11. Nath KG, Ivasenko O, MacLeod JM, Miwa JA, Wuest JD, Nanci A, Perepichka DF, Rosei F (2007) Crystal engineering in two dimensions: an approach to molecular nanopatterning. J Phys Chem C 111:16996–17007

    Article  CAS  Google Scholar 

  12. Zhang X, Zeng Q, Wang C (2013) Molecular templates and nano-reactors: two-dimensional hydrogen bonded supramolecular networks on solid/liquid interfaces. RSC Adv. 3:11351–11366

    Article  CAS  Google Scholar 

  13. Cyr DM, Venkataraman B, Flynn GW (1996) STM Investigations of organic molecules physisorbed at the liquid-solid interface. Chem Mater 8:1600–1615

    Article  CAS  Google Scholar 

  14. Tahara K, Katayama K, Blunt MO, De Feyter S, Tobe Y (2014) Functionalized surface-confined pores: guest binding directed by lateral noncovalent interactions at the solid-liquid interface. ACS Nano 8:8683–8694

    Article  CAS  Google Scholar 

  15. Xu L, Miao XR, Ying X, Deng WL (2012) Two-dimensional self-assembled molecular structures formed by the competition of van der Waals forces and dipole–dipole interactions. J Phys Chem C 116:1061–1069

    Article  CAS  Google Scholar 

  16. Yang Y, Wang C (2009) Solvent effects on two-dimensional molecular self-assemblies investigated by using scanning tunneling microscopy. Curr Opin Colloid Interface Sci 14:135–147

    Article  CAS  Google Scholar 

  17. Destoop I, Ghijsens E, Katayama K, Tahara K, Mali KS, Tobe Y, De Feyter S (2012) Solvent-induced homochirality in surface-confined low-density nanoporous molecular networks. J Am Chem Soc 134:19568–19571

    Article  CAS  Google Scholar 

  18. Xu L, Miao X, Zha B, Deng W (2012) Self-assembly polymorphism: solvent-responsive two-dimensional morphologies of 2,7-ditridecyloxy-9-fluorenone by scanning tunneling microscopy. J Phys Chem C 116:16014–16022

    Article  CAS  Google Scholar 

  19. Takami T, Mazur U, Hipps KW (2009) Solvent-induced variations in surface structure of a 2,9,16,23-tetra-tert-butyl-phthalocyanine on graphite. J Phys Chem C 113:17479–17483

    Article  CAS  Google Scholar 

  20. Blunt MO, Adisoejoso J, Tahara K, Katayama K, Van der Auweraer M, Tobe Y, De Feyter S (2013) Temperature-induced structural phase transitions in a two-dimensional self-assembled network. J Am Chem Soc 135:12068–12075

    Article  CAS  Google Scholar 

  21. Song W, Martsinovich N, Heckl WM, Lackinger M (2013) Born-Haber cycle for monolayer self-assembly at the liquid-solid interface: assessing the enthalpic driving force. J Am Chem Soc 135:14854–14862

    Article  CAS  Google Scholar 

  22. Miyake Y, Nagata T, Tanaka H, Yamazaki M, Ohta M, Kokawa R, Ogawa T (2012) Entropy-controlled 2D supramolecular structures of N, N′-bis(n-alkyl)-naphthalenediimides on a HOPG surface. ACS Nano 6:3876–3887

    Article  CAS  Google Scholar 

  23. Gutzler R, Sirtl T, Dienstmaier JF, Mahata K, Heckl WM, Schmittel M, Lackinger M (2010) Reversible phase transitions in self-assembled monolayers at the liquid-solid interface: temperature-controlled opening and closing of nanopores. J Am Chem Soc 132:5084–5090

    Article  CAS  Google Scholar 

  24. Ciesielski A, Palma CA, Bonini M, Samorì P (2010) Towards supramolecular engineering of functional nanomaterials: pre-programming multi-component 2D self-assembly at solid-liquid interfaces. Adv Mater 22:3506–3520

    Article  CAS  Google Scholar 

  25. Zhang XM, Zeng QD, Wang C (2013) Reversible phase transformation at the solid-liquid Interface: STM reveals. Chem Asian J 8:2330–2340

    Article  CAS  Google Scholar 

  26. Arai R, Uemura S, Irie M, Matsuda K (2008) Reversible photoinduced change in molecular ordering of diarylethene derivatives at a solution-HOPG interface. J Am Chem Soc 130:9371–9379

    Article  CAS  Google Scholar 

  27. Sakano T, Imaizumi Y, Hirose T, Matsuda K (2013) Formation of two-dimensional ordering of diarylethene annulated isomer upon in situ UV irradiation at the liquid/HOPG interface. Chem Lett 42:1537–1539

    Article  CAS  Google Scholar 

  28. Yokoyama S, Hirose T, Matsuda K (2014) Phototriggered formation and disappearance of surface-confined self-assembly composed of photochromic 2-thienyl-type diarylethene: a cooperative model at the liquid/solid interface. Chem Commun 50:5964–5966

    Article  CAS  Google Scholar 

  29. Martin RB (1996) Comparisons of indefinite self-association models. Chem Rev 96:3043–3064

    Article  CAS  Google Scholar 

  30. Yokoyama S, Hirose T, Matsuda K (2015) Effects of alkyl chain length and hydrogen bonds on the cooperative self-assembly of 2-thienyl-type diarylethenes at a liquid/highly oriented pyrolytic graphite (HOPG) interface. Chem Eur J 21:13569–13576

    Article  CAS  Google Scholar 

  31. Frath D, Sakano T, Imaizumi Y, Yokoyama S, Hirose T, Matsuda K (2015) Diarylethene self-assembled monolayers: cocrystallization and mixing-induced cooperativity highlighted by scanning tunneling microscopy at the liquid/solid interface. Chem Eur J 21:11350–11358

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Funding Program for Next Generation World-Leading Researchers (NEXT program, no. GR062) and a Grant-in-Aid for Scientific Research on Innovative Areas “Photosynergetics” JSPS KAKENHI Grant Number JP26107008 from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Matsuda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Matsuda, K., Hirose, T., Yokoyama, S., Frath, D. (2017). Cooperative Self-assembly of Photochromic Diarylethenes at Liquid/Solid Interface and Highly Sensitive Photoinduced Transformation of the Ordering. In: Yokoyama, Y., Nakatani, K. (eds) Photon-Working Switches. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56544-4_20

Download citation

Publish with us

Policies and ethics