Novel Ethene-Bridged Diarylethene Photochromic Systems: Self-Assembly, Photoswitcher, and Molecular Logic Gates

  • Shangjun Chen
  • Wenlong Li
  • Wei-Hong Zhu


The last decade has witnessed the great expansion of the photochromic family, especially the most promising representative, diarylethene, owing to the excellent thermal stability and outstanding fatigue resistance. Till now, (perfluoro/hydro)cyclopentene bridge has been proved to be the best choice for diarylethenes. However, cyclopentene bridge also limits the molecular modification within the side aryl groups. In fact, other novel ethene bridges would enlarge the versatility of diarylethene architectures, enhance the photochromic performance, and finally endow other photo-modulated properties. This chapter summarizes the recent development in the diarylethenes with novel ethene bridge and their applications on self-assembly, photoswitcher, and molecular logic gates.


Ethene bridge Self-assembly Photoswitcher Molecular logic gates 


  1. 1.
    Hirshberg Y (1956) Reversible formation and eradication of colors by irradiation at low temperatures. A photochemical memory model. J Am Chem Soc 78:2304–2312CrossRefGoogle Scholar
  2. 2.
    Bouas-Laurent H, Dürr H (2001) Organic photochromism (IUPAC Technical Report). Pure Appl Chem 73:639–665CrossRefGoogle Scholar
  3. 3.
    Browne WR, Feringa BL (2009) Light switching of molecules on surfaces. Annu Rev Phys Chem 60:407–428CrossRefGoogle Scholar
  4. 4.
    Zhang JJ, Zou Q, Tian H (2013) Photochromic materials: more than meets the eye. Adv Mater 25:378–399CrossRefGoogle Scholar
  5. 5.
    Ratmo MF, Massimiliano T (2005) Electron and energy transfer modulation with photochromic switches. Chem Soc Rev 34:327–336Google Scholar
  6. 6.
    Yagai S, Kitamura A (2008) Recent advances in photoresponsive supramolecular self-assemblies. Chem Soc Rev 37:1520–1529CrossRefGoogle Scholar
  7. 7.
    Yildiz I, Deniz E, Raymo FM (2009) Fluorescence modulation with photochromic switches in nanostructured constructs. Chem Soc Rev 38:1859–1867CrossRefGoogle Scholar
  8. 8.
    Tsujioka T, Irie M (2010) Electrical functions of photochromic molecules. J Photochem Photobiol, C Photochem Rev 11:1–14CrossRefGoogle Scholar
  9. 9.
    Rafal K, Fraser JS, Grzybowski BA (2010) Nanoparticles functionalised with reversible molecular and supramolecular switches. Chem Soc Rev 39:2203–2237Google Scholar
  10. 10.
    Dong H, Zhu H, Meng Q, Gong X, Hu W (2012) Organic photoresponse materials and devices. Chem Soc Rev 41:1754–1808CrossRefGoogle Scholar
  11. 11.
    Fihey A, Perrier A, Browne WR, Jacquemin D (2015) Multiphotochromic molecular systems. Chem Soc Rev 44:3719–3759CrossRefGoogle Scholar
  12. 12.
    Andreasson J, Pischel U (2015) Molecules with a sense of logic: a progress report. Chem Soc Rev 44:1053–1069CrossRefGoogle Scholar
  13. 13.
    Qu D-H, Wang Q-C, Zhang Q-W, Ma X, Tian H (2015) Photoresponsive host-guest functional systems. Chem Rev 115:7543–7588CrossRefGoogle Scholar
  14. 14.
    Irie M, Fukaminato T, Matsuda K, Kobatake S (2014) Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem Rev 114:12174–12277CrossRefGoogle Scholar
  15. 15.
    Muxin H, Reent M, Bice H, Yu-Sheng C, Dietmar S, Michael J, Clever HG (2013) Light-triggered guest uptake and release by a photochromic coordination cage. Angew Chem Int Ed 52:1319–1323Google Scholar
  16. 16.
    Berberich M, Würthner F (2012) Terrylene bisimide-diarylethene photochromic switch. Chem Sci 3:2771–2777CrossRefGoogle Scholar
  17. 17.
    John-Christopher B, Carl-Johan C, Gates BD, Branda NR (2010) Two-way photoswitching using one type of near-infrared light, upconverting nanoparticles, and changing only the light intensity. J Am Chem Soc 132:15766–15772CrossRefGoogle Scholar
  18. 18.
    Yan W, Quan L (2012) Light-driven chiral molecular switches or motors in liquid crystals. Adv Mater 24:1926–1945CrossRefGoogle Scholar
  19. 19.
    Mallick A, Garai B, Addicoat MA, Petkov PS, Heine T, Banerjee R (2015) Solid state organic amine detection in a photochromic porous metal organic framework. Chem Sci 6:1420–1425CrossRefGoogle Scholar
  20. 20.
    Lasorne B, Fihey A, Mendive-Tapia D, Jacquemin D (2015) A curve-crossing model to rationalize and optimize diarylethene dyads. Chem Sci 6:5695–5702CrossRefGoogle Scholar
  21. 21.
    Herder M, Schmidt BM, Grubert L, Pätzel M, Schwarz J, Hecht S (2015) Improving the fatigue resistance of diarylethene switches. J Am Chem Soc 137:2738–2747CrossRefGoogle Scholar
  22. 22.
    Fukaminato T, Hirose T, Doi T, Hazama M, Matsuda K, Irie M (2014) Molecular design strategy toward diarylethenes that photoswitch with visible light. J Am Chem Soc 136:17145–17154Google Scholar
  23. 23.
    Cui X, Zhao J, Zhou Y, Ma J, Zhao Y (2014) Reversible photoswitching of triplet-triplet annihilation upconversion using dithienylethene photochromic switches. J Am Chem Soc 136:9256–9259CrossRefGoogle Scholar
  24. 24.
    Robert GS, Stefan H (2014) Controlling covalent connection and disconnection with light. Angew Chem Int Ed 53:8784–8787CrossRefGoogle Scholar
  25. 25.
    van der Molen SJ, Liao J, Kudernac T, Agustsson JS, Bernard L, Calame M, van Wees BJ, Feringa BL, Schönenberger C (2009) Light-controlled conductance switching of ordered metal–molecule–metal devices. Nano Lett 9:76–80CrossRefGoogle Scholar
  26. 26.
    Hohlneicher G, Mueller M, Demmer M, Lex J, Penn JH, Gan LX, Loesel PD (1988) 1,2-Diphenylcycloalkenes: electronic and geometric structures in the gas phase, solution, and solid state. J Am Chem Soc 110:4483–4494CrossRefGoogle Scholar
  27. 27.
    Amir Mahmoud A, Stéphanie B, Zach E, Branda NR (2014) Controlling a polymer adhesive using light and a molecular switch. J Am Chem Soc 136:3024–3027CrossRefGoogle Scholar
  28. 28.
    Torben S, Alejra E, Heck J, uuml, rgen, Carmen H (2015) Photoswitching behavior of a cyclohexene-bridged versus a cyclopentene-bridged dithienylethene system. Chem Phys Chem 16:1491–1501Google Scholar
  29. 29.
    Yuan K, Boixel J, Chantzis A, Jacquemin D, Guerchais V, Doucet H (2014) Benzothiophene or benzofuran bridges in diaryl ethenes: two-step access by Pd-catalyzed C–H activation and theoretical/experimental studies on their photoreactivity. Chem Eur J 20:10073–10083CrossRefGoogle Scholar
  30. 30.
    Chan JC-H, Lam WH, Yam VW-W (2014) A highly efficient silole-containing dithienylethene with excellent thermal stability and fatigue resistance: a promising candidate for optical memory storage materials. J Am Chem Soc 136:16994–16997CrossRefGoogle Scholar
  31. 31.
    Krayushkin MM, Shirinian VZ, Belen’kii LI, Shadronov AY, Martynkin AY, Uzhinov BM (2002) Synthesis of photochromic derivatives of cyclobutene-1,2-dione. Mendeleev Commun 12:141–143Google Scholar
  32. 32.
    Kühni J, Belser P (2007) Gated photochromism of 1,2-diarylethenes. Org Lett 9:1915–1918CrossRefGoogle Scholar
  33. 33.
    Irie M (2000) Diarylethenes for memories and switches. Chem Rev 100:1685–1716CrossRefGoogle Scholar
  34. 34.
    Kawai T, Iseda T, Irie M (2004) Photochromism of triangle terthiophene derivatives as molecular re-router. Chem Commun: 72–73Google Scholar
  35. 35.
    Poon CT, Lam WH, Wong HL, Yam WW (2010) A versatile photochromic dithienylethene-containing beta-diketonate ligand: near-infrared photochromic behavior and photoswitchable luminescence properties upon incorporation of a boron(III) center. J Am Chem Soc 132:13992–13993CrossRefGoogle Scholar
  36. 36.
    Poon CT, Lam WH, Yam VWW (2011) Gated photochromism in triarylborane-containing dithienylethenes: a new approach to a “lock-unlock” system. J Am Chem Soc 133:19622–19625CrossRefGoogle Scholar
  37. 37.
    Chan JC-H, Lam WH, Wong H-L, Zhu N, Wong W-T, Yam VW-W (2011) Diarylethene-containing cyclometalated platinum(ii) complexes: tunable photochromism via metal coordination and rational ligand design. J Am Chem Soc 133:12690–12705CrossRefGoogle Scholar
  38. 38.
    Wong H-L, Wong W-T, Yam VW-W (2012) Photochromic thienylpyridine–bis(alkynyl)borane complexes: toward readily tunable fluorescence dyes and photoswitchable materials. Org Lett 14:1862–1865CrossRefGoogle Scholar
  39. 39.
    Pang S-C, Hyun H, Lee S, Jang D, Lee MJ, Kang SH, Ahn K-H (2012) Photoswitchable fluorescent diarylethene in a turn-on mode for live cell imaging. Chem Commun 48:3745–3747CrossRefGoogle Scholar
  40. 40.
    Liu HH, Chen Y (2012) Modulation of absorption and fluorescence of photochromic diarylethene by intramolecular hydrogen bond. J Phys Org Chem 25:142–146CrossRefGoogle Scholar
  41. 41.
    Chen Y, Zeng DX, Fan MG (2003) Synthesis and photochromic properties of functional diarylethene with a 2,5-dihydrothiophene bridging unit. Org Lett 5:1435–1437CrossRefGoogle Scholar
  42. 42.
    Fukumoto S, Nakashima T, Kawai T (2011) Photon-quantitative reaction of a dithiazolylarylene in solution. Angew Chem Int Ed 50:1565–1568CrossRefGoogle Scholar
  43. 43.
    Nakashima T, Tsuchie K, Kanazawa R, Li R, Iijima S, Galangau O, Nakagawa H, Mutoh K, Kobayashi Y, Abe J, Kawai T (2015) Self-contained photoacid generator triggered by photocyclization of triangle terarylene backbone. J Am Chem Soc 137:7023–7026CrossRefGoogle Scholar
  44. 44.
    Olivier G, Takuyama N, Fran M, ccedil, ois, Tsuyoshi K (2015) Substituent effects on the photochromic properties of benzothiophene‐based derivatives. Chem Eur J 21:8471–8482Google Scholar
  45. 45.
    Xiaochuan L, Yuzhen M, Bingcai W, Gongan L (2008) “Lock and key control” of photochromic reactivity by controlling the oxidation/reduction state. Org Lett 10:3639–3642CrossRefGoogle Scholar
  46. 46.
    Jeong Y-C, Gao C, Lee IS, Yang SI, Ahn K-H (2009) The considerable photostability improvement of photochromic terarylene by sulfone group. Tetrahedron Lett 50:5288–5290CrossRefGoogle Scholar
  47. 47.
    Wu Y, Chen SJ, Yang YH, Zhang Q, Xie YS, Tian H, Zhu WH (2012) A novel gated photochromic reactivity controlled by complexation/dissociation with BF3. Chem Commun 48:528–530CrossRefGoogle Scholar
  48. 48.
    Wu Y, Xie Y, Zhang Q, Tian H, Zhu W, Li ADQ (2014) Quantitative photoswitching in bis(dithiazole)ethene enables modulation of light for encoding optical signals. Angew Chem Int Ed 53:2090–2094CrossRefGoogle Scholar
  49. 49.
    Chen S, Guo Z, Zhu S, Shi W, Zhu W (2013) A multiaddressable photochromic bisthienylethene with sequence-dependent responses: construction of an INHIBIT logic gate and a keypad lock. ACS Appl Mater Interfaces 5:5623–5629CrossRefGoogle Scholar
  50. 50.
    Chen S, Yang Y, Wu Y, Tian H, Zhu W (2012) Multi-addressable photochromic terarylene containing benzo[b]thiophene-1,1-dioxide unit as ethene bridge: multifunctional molecular logic gates on unimolecular platform. J Mater Chem 22:5486–5494CrossRefGoogle Scholar
  51. 51.
    Chen S, Chen L-J, Yang H-B, Tian H, Zhu W (2012) Light-triggered reversible supramolecular transformations of multi-bisthienylethene hexagons. J Am Chem Soc 134:13596–13599CrossRefGoogle Scholar
  52. 52.
    Kutsunugi Y, Kawai S, Nakashima T, Kawai T (2009) Photochromic properties of terarylene derivatives having a π-conjugation unit on central aromatic ring. New J Chem 6:1368–1373CrossRefGoogle Scholar
  53. 53.
    Nakagawa H, Kawai S, Nakashima T, Kawai T (2009) Synthesis and photochemical reactions of photochromic terarylene having a leaving methoxy group. Org Lett 11:1475–1478CrossRefGoogle Scholar
  54. 54.
    Taguchi M, Nakagawa T, Nakashima T, Kawai T (2011) Photochromic and fluorescence switching properties of oxidized triangle terarylenes in solution and in amorphous solid states. J Mater Chem 21:17425–17432CrossRefGoogle Scholar
  55. 55.
    Taguchi M, Nakagawa T, Nakashima T, Adachi C, Kawai T (2013) Photo-patternable electroluminescence based on one-way photoisomerization reaction of tetraoxidized triangle terarylenes. Chem Commun 49:6373–6375CrossRefGoogle Scholar
  56. 56.
    Nakagawa T, Atsumi K, Nakashima T, Hasegawa Y, Kawai T (2007) Reversible luminescence modulation in photochromic europium(III) complex having triangle terthiazole ligands. Chem Lett 36:372–373CrossRefGoogle Scholar
  57. 57.
    Nakashima T, Fujii R, Kawai T (2011) Regulation of folding and photochromic reactivity of terarylenes through a host-guest interaction. Chem -Eur J 17:10951–10957CrossRefGoogle Scholar
  58. 58.
    Kawai S, Nakashima T, Atsumi K, Sakai T, Harigai M, Imamoto Y, Kamikubo H, Kataoka M, Kawai T (2007) Novel photochromic molecules based on 4,5-dithienyl thiazole with fast thermal bleaching rate. Chem Mater 19:3479–3483CrossRefGoogle Scholar
  59. 59.
    Nakashima T, Kajiki Y, Fukumoto S, Taguchi M, Nagao S, Hirota S, Kawai T (2012) Efficient oxidative cycloreversion reaction of photochromic dithiazolythiazole. J Am Chem Soc 134:19877–19883CrossRefGoogle Scholar
  60. 60.
    H-h Liu, Chen Y (2012) Selective photoconversion of photochromic diarylethenes and their properties. New J Chem 36:2223–2227CrossRefGoogle Scholar
  61. 61.
    Liu H-H, Chen Y (2013) Synthesis and photophysical properties of thiolactone derivatives. Tetrahedron 69:1872–1876CrossRefGoogle Scholar
  62. 62.
    Lee PH-M, Ko C-C, Zhu N, Yam VW-W (2007) Metal coordination-assisted near-infrared photochromic behavior: a large perturbation on absorption wavelength properties of n, n-donor ligands containing diarylethene derivatives by coordination to the rhenium(I) metal center. J Am Chem Soc 129:6058–6059CrossRefGoogle Scholar
  63. 63.
    Nakashima T, Goto M, Kawai S, Kawai T (2008) Photomodulation of ionic interaction and reactivity: reversible photoconversion between imidazolium and imidazolinium. J Am Chem Soc 130:14570–14575CrossRefGoogle Scholar
  64. 64.
    Neilson BM, Lynch VM, Bielawski CW (2011) Photoswitchable n-heterocyclic carbenes: using light to modulate electron-donating properties. Angew Chem Int Ed 50:10322–10326CrossRefGoogle Scholar
  65. 65.
    Neilson BM, Bielawski CW (2012) Photoswitchable organocatalysis: using light to modulate the catalytic activities of N-heterocyclic carbenes. J Am Chem Soc 134:12693–12699CrossRefGoogle Scholar
  66. 66.
    Morinaka K, Ubukata T, Yokoyama Y (2009) Structurally versatile novel photochromic bisarylindenone and its acetal: achievement of large cyclization quantum yield. Org Lett 11:3890–3893CrossRefGoogle Scholar
  67. 67.
    Ogawa H, Takagi K, Ubukata T, Okamoto A, Yonezawa N, Delbaere S, Yokoyama Y (2012) Bisarylindenols: fixation of conformation leads to exceptional properties of photochromism based on 6π-electrocyclization. Chem Commun 48:11838–11840CrossRefGoogle Scholar
  68. 68.
    Shirinian VZ, Shimkin AA, Lonshakov DV, Lvov AG, Krayushkin MM (2012) Synthesis and spectral properties of a novel family of photochromic diarylethenes-2,3-diarylcyclopent-2-en-1-ones. J Photochem Photobiol, A 233:1–14CrossRefGoogle Scholar
  69. 69.
    Lonshakov DV, Shirinian VZ, Lvov AG, Nabatov BV, Krayushkin MM (2013) New fluorescent switches based on photochromic 2,3-diarylcyclopent-2-en-1-ones and 6-ethoxy-3-methyl-1H-phenalen-1-one. Dyes Pigm 97:311–317CrossRefGoogle Scholar
  70. 70.
    Zhu W, Yang Y, Metivier R, Zhang Q, Guillot R, Xie Y, Tian H, Nakatani K (2011) Unprecedented stability of a photochromic bisthienylethene based on benzobisthiadiazole as an ethene bridge. Angew Chem Int Ed 50:10986–10990CrossRefGoogle Scholar
  71. 71.
    Suzuki K, Ubukata T, Yokoyama Y (2012) Dual-mode fluorescence switching of photochromic bisthiazolylcoumarin. Chem Commun 48:765–767CrossRefGoogle Scholar
  72. 72.
    Duke RM, Veale EB, Pfeffer FM, Kruger PE, Gunnlaugsson T (2010) Colorimetric and fluorescent anion sensors: an overview of recent developments in the use of 1,8-naphthalimide-based chemosensors. Chem Soc Rev 39:3936–3953CrossRefGoogle Scholar
  73. 73.
    Meng XL, Zhu WH, Zhang Q, Feng YL, Tan WJ, Tian H (2008) Novel bisthienylethenes containing naphthalimide as the center ethene bridge: photochromism and solvatochromism for combined NOR and INHIBIT logic gates. J Phys Chem B 112:15636–15645CrossRefGoogle Scholar
  74. 74.
    Zhu W, Song L, Yang Y, Tian H (2012) Novel bisthienylethene containing ferrocenyl-substituted naphthalimide: a photo- and redox multi-addressable molecular switch. Chem -Eur J 18:13388–13394CrossRefGoogle Scholar
  75. 75.
    Zhu WH, Meng XL, Yang YH, Zhang Q, Xie YS, Tian H (2010) Bisthienylethenes containing a benzothiadiazole unit as a bridge: photochromic performance dependence on substitution position. Chem Eur J 16:899–906CrossRefGoogle Scholar
  76. 76.
    Yang Y, Xie Y, Zhang Q, Nakatani K, Tian H, Zhu W (2012) Aromaticity-controlled thermal stability of photochromic systems based on a six-membered ring as ethene bridges: photochemical and kinetic studies. Chem Eur J 18:11685–11694CrossRefGoogle Scholar
  77. 77.
    Li W, Jiao C, Li X, Xie Y, Nakatani K, Tian H, Zhu W (2014) Separation of photoactive conformers based on hindered diarylethenes: efficient modulation in photocyclization quantum yields. Angew Chem Int Ed 53:4603–4607CrossRefGoogle Scholar
  78. 78.
    Tian H, Chen B, Tu HY, Müllen K (2002) Novel bisthienylethene-based photochromic tetraazaporphyrin with photoregulating luminescence. Adv Mater 14:918–923CrossRefGoogle Scholar
  79. 79.
    Luo Q, Chen B, Wang M, Tian H (2003) Mono-bisthienylethene ring-fused versus multi-bisthienylethene ring-fused photochromic hybrids. Adv Funct Mater 13:233–239CrossRefGoogle Scholar
  80. 80.
    Yi J, Chen Z, Xiang J, Zhang F (2011) Photocontrollable J-aggregation of a diarylethene-phthalocyanine hybrid and its aggregation-stabilized photochromic behavior. Langmuir 27:8061–8066CrossRefGoogle Scholar
  81. 81.
    Yam VW-W, Ko C-C, Zhu N (2004) Photochromic and luminescence switching properties of a versatile diarylethene-containing 1,10-phenanthroline ligand and its rhenium(I) complex. J Am Chem Soc 126:12734–12735CrossRefGoogle Scholar
  82. 82.
    Ko C-C, Kwok W-M, Yam VW-W, Phillips DL (2006) Triplet MLCT Photosensitization of the ring-closing reaction of diarylethenes by design and synthesis of a photochromic rhenium(I) complex of a diarylethene-containing 1,10-phenanthroline ligand. Chem -Eur J 12:5840–5848CrossRefGoogle Scholar
  83. 83.
    Tung-Wan N, Chi-Chiu K, Nianyong Z, Vivian Wing-Wah Y (2007) Syntheses, luminescence switching, and electrochemical studies of photochromic dithienyl-1,10-phenanthroline zinc(II) bis(thiolate) complexes. Inorg Chem 46:1144–1152CrossRefGoogle Scholar
  84. 84.
    Nihei M, Suzuki Y, Kimura N, Kera Y, Oshio H (2013) Bidirectional Photomagnetic conversions in a spin-crossover complex with a diarylethene moiety. Chem -Eur J 19:6946–6949CrossRefGoogle Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  1. 1.Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine ChemicalsEast China University of Science and TechnologyShanghaiPeople’s Republic of China
  2. 2.Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Department of ChemistryShanghai Normal UniversityShanghaiPeople’s Republic of China

Personalised recommendations