Advertisement

Photochromic Crown Ethers

  • Olga Fedorova
  • Yuri Fedorov
  • Vladimir Lokshin
Chapter

Abstract

In this chapter, we demonstrated different strategies toward the construction of photochromic crown ethers in order to obtain the capability to recognize the chemical guest while retaining the photoswitchability. The complex formation in photochromic crown ether can be either spontaneous or stimulated by irradiation with light of the photochromic part. In the same way, light can disrupt the metal cation—crown ether interaction. Thus, the photochromic crown ethers demonstrate a new level of molecular sensing when receptor can bind reversibly so that they can overcome the problem of one-time sensor. Photochromic crown ethers can be a suitable platform to obtain multitask sensors and photo-switchable supramolecular systems.

Keywords

Crown ether Photochromism Photo-switchable complex formation Sensor 

Notes

Acknowledgements

Part of this collaborative work was realized within the framework GDRI CNRS 93 “Phenics” (Photoswitchable Organic Molecular Systems and Devices). OF thanks RFBR project № 13-03-93106, and YuF thanks RFBR project № 13-03-93107.

References

  1. 1.
    Mishra A, Behera RK, Behera PK, Mishra BK, Behera GB (2000) Cyanines during the 1990s: a review. Chem Rev 100:1973–2012CrossRefGoogle Scholar
  2. 2.
    (a) Valeur B, Leray I (2000) Design principles of fluorescent molecular sensors for cation recognition. Coord Chem Rev 205:3–40; (b) Kimura K (1996) Photocontrol of ionic conduction by photochromic crown ethers. Coord Chem Rev 148:41–61Google Scholar
  3. 3.
    De Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97:1515–1566CrossRefGoogle Scholar
  4. 4.
    Gokel GW (1991) Crown ethers and cryptands. Royal Society of Chemistry, Cambridge, pp 1–191Google Scholar
  5. 5.
    Dietrich B, Viout P, Lehn JM (1993) Macrocyclic chemistry: aspects of organic and inorganic chemistry. VCH, Weinheim, pp 1–384Google Scholar
  6. 6.
    Paramonov SV, Lokshin V, Fedorova OA (2011) Spiropyran, chromene or spirooxazine ligands: insights into mutual relations between complexing and photochromic properties. J Photochem Photobiol C Photochem Rev 12:209–236CrossRefGoogle Scholar
  7. 7.
    Abdullah A, Roxburgh CJ, Sammes PG (2008) Photochromic crowned spirobenzopyrans: quantitative metal-ion chelation by UV, competitive selective ion-extraction and metal-ion transportation demonstration studies. Dyes Pigm 76:319–326CrossRefGoogle Scholar
  8. 8.
    Sakamoto H, Yamamura T, Takumi K, Kimura K (2007) Absorption- and fluorescence-spectral sensing of alkali metal ions in anionic micelle solutions containing crowned spirobenzopyrans. J Phys Org Chem 20:900–907CrossRefGoogle Scholar
  9. 9.
    (a) Voloshin NA, Chernyshev AV, Metelitsa AV, Besugliy SO, Voloshina EN et al (2004) Photochromic spiro[indoline-pyridobenzopyrans]: fluorescent metal-ion sensors. Arkivoc 11:16–24; (b) Nakamura M, Kamoto HSA, Kimura K (2005) Photocontrollable cation extraction with crowned oligo(spirobenzopyran)s. Anal Sci 21:403–408Google Scholar
  10. 10.
    Koszegi E, Grun A, Bitter I (2006) 1,1′-Binaphtho(aza)crowns carrying photochromic signalling unit. I. Synthesis, characterization and cation recognition properties. Supramol Chem 18:67–76CrossRefGoogle Scholar
  11. 11.
    Fedorova OA, Strokach YP, Gromov SP, Koshkin AV, Valova TM, Alfimov MV, Feofanov AV, Alaverdian IS, Lokshin V, Samat A, Guglielmetti R, Girling RB, Moore JN, Hester RE (2002) Effect of metal cations on the photochromic properties of spironaphthoxazines conjugated with aza-15(18)-crown-5(6) ethers. New J Chem 26:1137–1145CrossRefGoogle Scholar
  12. 12.
    Fedorova OA, Koshkin AV, Gromov SP, Strokach YP, Valova TM, Alfimov MV, Feofanov AV, Alaverdian IS, Lokshin VA, Samat A (2005) Transformation of 6-aminosubstituted spironaphthoxazines induced by Pb(II) and Eu(III) cations. J Phys Org Chem 18:504–512CrossRefGoogle Scholar
  13. 13.
    (a) Tu C, Nagao R, Louie AY (2009) Multimodal magnetic-resonance/optical-imaging contrast agent sensitive to NADH. Angew Chem Int Ed 48:6547–6551; (b) Tu C, Osborne EA, Louie AY (2009) Synthesis and characterization of a redox- and light-sensitive MRI contrast agent. Tetrahedron 65:1241–1246Google Scholar
  14. 14.
    Fedorova OA, Gromov SP, Pershina YV, Sergeev SS, Strokach YP, Barachevsky VA, Alfimov MV, Pepe G, Samat A, Guglielmetti R (2000) Novel azacrown ether-containing spiro[indoline-2,3′-naphthoxazines]: design, synthesis and cation-dependent photochromism. J Chem Soc Perkin Trans 2(3):563–571Google Scholar
  15. 15.
    Inouye M, Ueno M, Tsuchiya K, Nakayama N, Konishi T, Kitao T (1992) Alkali-metal cation recognition induced isomerization of spirobenzopyrans and spironaphthoxazins possessing a crown ring as a recognition site: multifunctional artificial receptors. J Org Chem 57:5377–5383CrossRefGoogle Scholar
  16. 16.
    Fedorova OA, Koshkin AV, Gromov SP, Avakyan VG, Nazarov VB, Brichkin SB, Vershinnikova TG, Nikolaeva TM, Chernych LA, Alfimov MV (2002) Crown-containing spironaphthoxazines and spiropyrans. 3. Synthesis and investigation of the merocyanine form of crown-containing spirobenzothiazolinonaphthoxazine. Russ Chem Bull 51:1441–1450CrossRefGoogle Scholar
  17. 17.
    (a) Korolev VV, Vorobyev DY, Glebov EM, Grivin VP, Plyusnin VF, Koshkin AV, Fedorova OA, Gromov SP, Alfimov MV, Shklyaev YV, Vshivkova TS, Rozhkova YS, Tolstikov AG, Lokshin VA, Samat A (2006) Synthesis and cation-dependent photochromism of spironaphthoxazines obtained from crown-containing dihydroisoquinolines. Mendeleev Commun 16:302–304; (b) Korolev VV, Vorobyev DY, Glebov EM, Grivin VP, Plyusnin VF, Koshkin AV, Fedorova OA, Gromov SP, Alfimov MV, Shklyaev YV, Vshivkova TS, Rozhkova YS, Tolstikov AG, Lokshin VA, Samat A (2007) Spironaphtoxazines produced from crown-containing dihydroisoquinolines: synthesis and spectroscopic study of cation-dependent photochromism. J Photochem Photobiol A 192:75–83Google Scholar
  18. 18.
    Fedorova OA, Maurel F, Chebun’kova AV, Strokach YP, Valova TM, Kuzmina LG, Howard JAK, Wenzel M, Gloe K, Lokshin V, Samat A (2007) Investigation of cation complexation behavior of azacrown ether substituted benzochromene. J Phys Org Chem 20:469–483CrossRefGoogle Scholar
  19. 19.
    Chebun’kova AV, Gromov SP, Strokach YP, Valova TM, Alfimov MV, Fedorova OA, Lokshin V, Samat A (2005) Investigation of the azacrown-ether substituted naphtopyranes. Mol Cryst Liq Cryst 430:67–73CrossRefGoogle Scholar
  20. 20.
    Fedorova OA, Strokach YP, Chebun’kova AV, Valova TM, Gromov SP, Alfimov MV, Lokshin V, Samat A (2006) Synthesis and complexation properties of photochromic benzochromenes containing aza-and diaza-18-crown-6-ether fragment. Russ Chem Bull 55:287–294CrossRefGoogle Scholar
  21. 21.
    Ahmed SA, Tanaka M, Ando H, Iwamoto H, Kimura K (2003) Synthesis and photochromism of novel chromene derivatives bearing a monoazacrown ether moiety. Eur J Org Chem 13:2437–2442CrossRefGoogle Scholar
  22. 22.
    Ahmed SA, Tanaka M, Ando H, Iwamoto H, Kimura K (2004) Oxymethylcrowned chromene: photoswitchable stoichiometry of metal ion complex and ion-responsive photochromism. Tetrahedron 60:3211–3220CrossRefGoogle Scholar
  23. 23.
    Ushakov EN, Nazarov VB, Fedorova OA, Gromov SP, Chebun’kova AV, Alfimov MV, Barigelletti F (2003) Photocontrol of Ca2+ complexation with an azacrown-containing benzochromene. J Phys Org Chem 16:306–309CrossRefGoogle Scholar
  24. 24.
    Fedorova OA, Maurel F, Ushakov EN, Nazarov VB, Gromov SP, Chebunkova AV, Feofanov AV, Alaverdian IS, Alfimov MV, Barigelletti F (2003) Synthesis, photochromic behaviour and light-controlled complexation of 3,3-diphenyl-3H-benzo[f]chromenes containing a dimethylamino group or an aza-15-crown-5 ether unit. New J Chem 27:1720–1730CrossRefGoogle Scholar
  25. 25.
    Nazarov VB, Fedorova OA, Brichkin SB, Nikolaeva TM, Gromov SP, Chebun’kova AV, Alfimov MV (2003) Complex formation of 2,2-diphenyl-2H-benzo[f]chromene containing the aza-18-crown-6-ether fragment in the polymeric layer. Russ Chem Bull 52:2661–2667CrossRefGoogle Scholar
  26. 26.
    Stauffer MT, Knowles DB, Brennan C, Funderburk L, Lin FT, Weber SG (1997) Optical control over Pb2+ binding to a crownether-containing chromene. Chem Commun, pp 287–288Google Scholar
  27. 27.
    Paramonov S, Delbaere S, Fedorova O, Fedorov Y, Lokshin V, Samat A, Vermeersch G (2010) Structural and photochemical aspect of metal-ion-binding to a photochromic chromene annulated by crown-ether moiety. J Photochem Photobiol A Chem 209:111–120CrossRefGoogle Scholar
  28. 28.
    Paramonov S, Fedorov Y, Lokshin V, Tulyakova E, Vermeersch G, Delbaere S, Fedorova O (2012) Mono- and ditopic models of binding of a photochromic chromene annelated with an 18-crown-6 ether with protonated amino acids. Org Biomol Chem 10:671–682CrossRefGoogle Scholar
  29. 29.
    Saltiel J, Charlton JL (1980) Cis–trans isomerization of olefins. In: De Mayo P (ed) Rearrangement in ground and excited states, vol 3. Academic Press, New York, pp 25–90CrossRefGoogle Scholar
  30. 30.
    Inokuma S, Yamamoto T, Nishimura J (1990) Efficient intramolecular [2+2] photocycloaddition of styrene derivatives toward new crown ethers. Tetrahedron Lett 31:97–100CrossRefGoogle Scholar
  31. 31.
    Fedorova O, Ushakov E, Fedorov Y, Strokach Y, Gromov S (2005) Macrocyclic systems with photoswitchable functions. In: Gloe K (ed) Macrocyclic chemistry: current trends and future perspectives. Springer, Dordrecht, pp 235–252CrossRefGoogle Scholar
  32. 32.
    Fedorova OA, Gromov SP (2001) Cation-dependent pericyclic reactions of photochromic crown ethers. In: Attanasi OA, Spinelli D (eds) Targets in heterocyclic systems: chemistry and properties, vol 4. Societa Chimica Italiana, pp 205–229Google Scholar
  33. 33.
    Fedorova OA, Fedorov YV (2013) Supramolecular organized crown-containing styryl dyes: photocontrolled complex formation, cation dependent photochemical properties. In: Fu J (ed) Dyeing: processes, techniques and applications. Nova Science Publishers, New York, pp 39–64Google Scholar
  34. 34.
    Fedorova O, Fedorov Y, Gulakova E, Schepel N, Alfimov M, Goli U, Saltiel J (2007) Supramolecular photochemical synthesis of an unsymmetrical cyclobutane. Photochem Photobiol Sci 6:1097–1105CrossRefGoogle Scholar
  35. 35.
    Bianchi A, Delgado-Pinar E, García-España E, Giorgi C, Pina F (2014) Highlights of metal ion-based photochemical switches. Coord Chem Rev 260:156–215CrossRefGoogle Scholar
  36. 36.
    (a) Shinkai S, Ogawa T, Nakaji T, Kusano Y, Manabe O (1979) Photocontrolled extraction ability of azobenzene-bridged azacrown ether. Tetrahedron Lett 20:4569–4572; (b) Shinkai S, Nakaji T, Nishida Y, Ogawa T, Manabe O (1980) Photoresponsive crown ethers. 1. Cis-trans isomerism of azobenzene as a tool to enforce conformational changes of crown ethers and polymers. J Am Chem Soc 102:5860–5865Google Scholar
  37. 37.
    (a) Shiga M, Takagi M, Ueno K (1980) Azo-crown ethers. The dyes with azo group directly involved in the crown ether skeketon. Chem Lett 9:1021–1022; (b) Tahara R, Morozumi T, Nakamura H, Shimomura M (1997) Photoisomerization of azobenzocrown ethers. Effect of complexation of alkaline earth metal ions. J Phys Chem B 101:7736–7743Google Scholar
  38. 38.
    (a) Bencini A, Bernardo MA, Bianchi A, Ciampolini M, Fusi V, Nardi N, Parola AJ, Pina F, Valtancoli B (1998) Modulation of the ligational properties of a new cylindrical macrotricycle by coupling of photochemical- and pH-switching properties. J Chem Soc Perkin Trans 2(2):413–418; (b) Bencini A, Bianchi A, Giorgi C, Romagnoli E, Lodeiro C, Saint-Maurice A, Pina F, Valtancoli B (2001) Photochemical- and pH-switching properties of a new photoelastic ligand based upon azobenzene. Basicity and anion binding. Supramol Chem 13:277–285Google Scholar
  39. 39.
    Marchi E, Baroncicni M, Van Heyst J, Vogtle F, Ceroni P (2012) Photoswitchable metal coordinating tweezers operated by light-harvesting dendrimers. J Am Chem Soc 134:15277–15280CrossRefGoogle Scholar
  40. 40.
    (a) Takeshita M, Soong CF, Irie M (1998) Alkali metal ion effect on the photochromism of 1,2-bis(2,4-dimethylthien-3-yl)-perfluorocyclopentene having benzo-15-crown-5 moieties. Tetrahedron Lett 39:7717–7720; (b) Takeshita M, Irie M (1998) Photoresponsive tweezers for alkali metal ions. Photochromic diarylethenes having two crown ether moieties. J Org Chem 63:6643–6649; (c) Kawai SH (1998) Photochromic bis(monoaza-crown ether)s. Alkali-metal cation complexing properties of novel diarylethenes. Tetrahedron Lett 39:4445–4448Google Scholar
  41. 41.
    Malval JP, Gosse I, Morand JP, Lapouyade R (2002) Photoswitching of cation complexation with a monoaza-crown dithienylethene photochrome. J Am Chem Soc 124:904–905CrossRefGoogle Scholar
  42. 42.
    Durr H, Thome A, Kranz C, Kilburg H, Bossmann S, Braun B, Janzen KP, Blasius E (1992) Supramolecular effects on photochromism—properties of crown ether-modified dihydroindolizines. J Phys Org Chem 5:689–698CrossRefGoogle Scholar
  43. 43.
    Guo Z, Wang G, Tang Y, Song X (1997) A crown ether bearing fulgide: the regulation of photochromism by supramolecular effects. Liebigs Ann 1997:941–942CrossRefGoogle Scholar
  44. 44.
    Lohse M, Nowosinski K, Traulsen NL, Achazi AJ, von Krbek LKS, Paulus B, Schalley CA, Hecht S (2015) Gating the photochromism of an azobenzene by strong host–guest interactions in a divalent pseudo[2]rotaxane. Chem Com 51:9777–9780CrossRefGoogle Scholar
  45. 45.
    Avellini T, Baroncini M, Ragazzon G, Silvi S, Venturi M, Credi A (2014) Photochemically controlled molecular machines with sequential logic operation. Israel J Chem 54:553–567CrossRefGoogle Scholar
  46. 46.
    Cheng HB, Zhang HY, Liu Y (2013) Dual-stimulus luminescent lanthanide molecular switch based on an unsymmetrical diarylperfluorocyclopentene. J Am Chem Soc 135:10190–10193CrossRefGoogle Scholar
  47. 47.
    Hu F, Huang J, Cao M, Chen Z, Yang YW, Liu SH, Yin J (2014) Dithienylethene-based rotaxanes: synthesis, characterization and properties. Org Biomol Chem 12:7712–7720CrossRefGoogle Scholar
  48. 48.
    Hirose K, Shiba Y, Ishibashi K, Doi Y, Tobe Y (2008) A shuttling molecular machine with reversible brake function. Chem Eur J 14:3427–3433Google Scholar
  49. 49.
    Takeshita M, Irie M (1998) Photoresponsive cesium ion tweezers with a photochromic dithienylethene. Tetrahedron Lett 39:613–616CrossRefGoogle Scholar
  50. 50.
    (a) Sakamoto H, Takagaki H, Nakamura M, Kimura K (2005) Photoresponsive liquid membrane transport of alkali metal ions using crowned spirobenzopyrans. Anal Chem 77:1999–2006; (b) Liu T, Bao C, Wang H, Lin Y, Jia H, Zhu L (2013) Light-controlled ion channels formed by amphiphilic small molecules regulate ion conduction via cis–trans photoisomerization. Chem Com 49:10311–10313Google Scholar
  51. 51.
    Cacciapaglia R, Di Stefano S, Mandolini L (2003) The bis-barium complex of a butterfly crown ether as a phototunable supramolecular catalyst. J Am Chem Soc 125:2224–2227CrossRefGoogle Scholar
  52. 52.
    Nazarov VB, Fedorova OA, Brichkin SB, Nikolaeva TM, Gromov SP, Chebunkova AV, Alfimov MV (2003) Complex formation of 2,2-diphenyl-2H-benzo[f]chromene containing the aza-18-crown-6-ether fragment in the polymeric layer. Rus Chem Bull 52:2661–2667CrossRefGoogle Scholar
  53. 53.
    Shibaev VP, Medvedev AS, Bobrovsky AY (2007) Photochromic liquid-crystalline copolymers containing crown ether groups. Rus Chem Bull 56:2414–2425CrossRefGoogle Scholar
  54. 54.
    Zaitsev SY, Solovieva OV, Zaitsev IS (2015) Multifunctional membranes based on photosensitive crown-ether derivatives with advanced properties. Adv Coll Int Sci 222:755–764CrossRefGoogle Scholar
  55. 55.
    Heng S, Nguyen MC, Kostecki R, Monro M, Abell AD (2013) Nanoliter-scale, regenerable ion sensor: sensing with a surface functionalized microstructured optical fibre. RSC Adv 3:8308–8317Google Scholar
  56. 56.
    Nakahara Y, Yamaguchi Y, Iwamoto H, Sakamato H, Kimura K (2012) Effect of photoirradiation on chromatographic separation of alkali metal ions using crowned-spirobenzopyran-immobilized silica. Anal Methods 4:4025–4029CrossRefGoogle Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  1. 1.A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of SciencesMoscowRussia
  2. 2.Aix-Marseille Université, CNRS, CINaM UMR 7325MarseilleFrance

Personalised recommendations