Modeling Diarylethene Excited States with Ab Initio Tools: From Model Systems to Large Multimers

  • Martial Boggio-Pasqua
  • Aurélie Perrier
  • Arnaud Fihey
  • Denis Jacquemin


In this chapter, we provide a review of theoretical works performed with first-principle approaches focusing on the understanding, rationalization, and improvement of diarylethene photochromes. This contribution is divided into two large parts. The first is devoted to high-level theoretical calculations (e.g., multiconfigurational wavefunction approaches) along with non-adiabatic dynamic simulations, performed on model molecules. These studies deliver an accurate picture of the photochemistry, notably by allowing the characterization of conical intersections, and provide a deep understanding of the excited-state reactivity, but at the price of using simplified chemical models. In a second stage, we describe some of the investigations performed on more realistic molecules, but with less accurate theories, typically time-dependent density functional theory. These latter works yield more qualitative insights but nevertheless allow to optimize several properties of diarylethene monomers and multimers.


Diarylethene Quantum mechanics Photoreactivity Multiphotochromes 



The authors acknowledge their coauthors on the subject (alphabetical order): S. Aloïse (Lille), M. Bearpark (London), B. Lasorne (Montpellier), F. Maurel (Paris), D. Mendive-Tapia (Montpellier), C. Michaux (Namur), M. Olivucci (Siena), E.A. Perpète (Namur), and M. Robb (London). A.F. acknowledges the European Research Council (ERC—Marches 278845) for his postdoctoral grant. D.J. acknowledges the European Research Council (ERC) and the Région des Pays de la Loire for financial support in the framework of a Starting Grant (Marches—278845) and a recrutement sur poste stratégique, respectively.


  1. 1.
    Irie M, Fukaminato T, Matsuda K, Kobatake S (2014) Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem Rev 114(24):12174–12277CrossRefGoogle Scholar
  2. 2.
    Feringa BL (2001) Molecular switches. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  3. 3.
    Tian H, Yang S (2004) Recent progresses on diarylethene based photochromic switches. Chem Soc Rev 33:85–97CrossRefGoogle Scholar
  4. 4.
    Perrier A, Maurel F, Jacquemin D (2012) Single molecule multiphotochromism with diarylethenes. Acc Chem Res 45(8):1173–1182CrossRefGoogle Scholar
  5. 5.
    Al-Atar U, Fernandes R, Johnse B, Baillie D, Branda NR (2009) A photocontrolled molecular switch regulates paralysis in a living organism. J Am Chem Soc 131:15966–15967CrossRefGoogle Scholar
  6. 6.
    Morimoto M, Irie M (2010) A diarylethene cocrystal that converts light into mechanical work. J Am Chem Soc 132:14172–14178CrossRefGoogle Scholar
  7. 7.
    Hervault Y-M, Ndiaye CM, Norel L, Lagrost C, Rigaut S (2012) Controlling the stepwise closing of identical DTE photochromic units with electrochemical and optical stimuli. Org Lett 14(17):4454–4457CrossRefGoogle Scholar
  8. 8.
    Pijper TC, Ivashenko O, Walko M, Rudolf P, Browne WR, Feringa BL (2015) Position and orientation control of a photo- and electrochromic dithienylethene using a tripodal anchor on gold surfaces. J Phys Chem C 119(7):3648–3657CrossRefGoogle Scholar
  9. 9.
    Nakamura S, Yokojima S, Uchida K, Tsujioka T, Goldberg A, Murakami A, Shinoda K, Mikami M, Kobayashi T, Kobatake S, Matsuda K, Irie M (2008) Theoretical investigation on photochromic diarylethene: a short review. J Photochem Photobiol A Chem 200(1):10–18 (special issue perspectives on photochromism from ISOP’07, Vancouver, Canada, 7–10 Oct 2007)Google Scholar
  10. 10.
    Guillaumont D, Kobayashi T, Kanda K, Miyasaka H, Uchida K, Kobatake S, Shibata K, Nakamura S, Irie M (2002) An ab initio MO study of the photochromic reaction of dithienylethenes. J Phys Chem A 106:7222–7227CrossRefGoogle Scholar
  11. 11.
    Boggio-Pasqua M, Ravaglia M, Bearpark MJ, Garavelli M, Robb MA (2003) Can diarylethene photochromism be explained by a reaction path alone? A CASSCF study with model MMVB dynamics. J Phys Chem A 107(50):11139–11152CrossRefGoogle Scholar
  12. 12.
    Asano Y, Murakami A, Kobayashi T, Goldberg A, Guillaumont D, Yabushita S, Irie M, Nakamura S (2004) Theoretical study on the photochromic cycloreversion reactions of dithienylethenes: on the role of the conical intersections. J Am Chem Soc 126:12112–12120CrossRefGoogle Scholar
  13. 13.
    Nakamura S, Kobayashi T, Takata A, Uchida K, Asano Y, Murakami A, Goldberg A, Guillaumont D, Yokojima S, Kobatake S, Irie M (2007) Quantum yields and potential energy surfaces: a theoretical study. J Phys Org Chem 20(11):821–829CrossRefGoogle Scholar
  14. 14.
    Indelli MT, Carli S, Ghirotti M, Chiorboli C, Ravaglia M, Garavellli M, Scandola F (2008) Triplet pathways in diarylethene photochromism: Photophysical and computational study of dyads containing ruthenium(II) polypyridine and 1,2-bis(2-methylbenzothiophene-3-yl)maleimide units. J Am Chem Soc 130:7286–7299CrossRefGoogle Scholar
  15. 15.
    Perrier A, Aloise S, Olivucci M, Jacquemin D (2013) Inverse versus normal dithienylethenes: computational investigation of the photocyclization reaction. J Phys Chem Lett 4(13):2190–2196CrossRefGoogle Scholar
  16. 16.
    Mendive-Tapia D, Perrier A, Bearpark MJ, Robb MA, Lasorne B, Jacquemin D (2014) New insights into the by-product fatigue mechanism of the photo-induced ring-opening in diarylethenes. Phys Chem Chem Phys 16:18463–18471CrossRefGoogle Scholar
  17. 17.
    Hania PR, Telesca R, Lucas LN, Pugzlys A, van Esch J, Feringa BL, Snijders JG, Duppen K (2002) An optical and theoretical investigation of the ultrafast dynamics of a bisthienylethene-based photochromic switch. J Phys Chem A 106(37):8498–8507CrossRefGoogle Scholar
  18. 18.
    Jacquemin D, Perpète EA (2006) Ab initio calculations of the colour of closed-ring diarylethenes: TD-DFT estimates for molecular switches. Chem Phys Lett 429:147–152CrossRefGoogle Scholar
  19. 19.
    Perrier A, Maurel F, Aubard J (2007) Theoretical investigation of the substituent effect on the electronic and optical properties of photochromic dithienylethene derivatives. J Photochem Photobiol A Chem 189:167–176CrossRefGoogle Scholar
  20. 20.
    Laurent AD, André JM, Perpète EA, Jacquemin D (2007) Photochromic properties of dithienylazoles and other conjugated diarylethenes. J Photochem Photobiol A Chem 192:211–219CrossRefGoogle Scholar
  21. 21.
    Maurel F, Perrier A, Perpète EA, Jacquemin D (2008) A theoretical study of the perfluoro-diarylethenes electronic spectra. J Photochem Photobiol A Chem 199:211–223CrossRefGoogle Scholar
  22. 22.
    Mikhailov IA, Belfield KD, Masunov AE (2009) DFT-based methods in the design of two-photon operated molecular switches. J Phys Chem A 113(25):7080–7089CrossRefGoogle Scholar
  23. 23.
    Patel PD, Masunov AE (2009) Theoretical study of photochromic compounds. 1. Bond length alternation and absorption spectra for the open and closed forms of 29 diarylethene derivatives. J Phys Chem A 113:8409–8414CrossRefGoogle Scholar
  24. 24.
    Staykov A, Yoshizawa K (2009) Photochemical reversibility of ring-closing and ring-opening reactions in diarylperfluorocyclopentenes. J Phys Chem C 113:3826–3834CrossRefGoogle Scholar
  25. 25.
    Aloïse S, Sliwa M, Pawlowska Z, Réhault J, Dubois J, Poizat O, Buntinx G, Perrier A, Maurel F, Yamaguchi S, Takeshita M (2010) Bridged photochromic diarylethenes investigated by ultrafast absorption spectroscopy: evidence for two distinct photocyclization pathways. J Am Chem Soc 132(21):7379–7390CrossRefGoogle Scholar
  26. 26.
    Aubert V, Ordronneau L, Escadeillas M, Williams JAG, Boucekkine A, Coulaud E, Dragonetti C, Righetto S, Roberto D, Ugo R, Valore A, Singh A, Zyss J, Ledoux-Rak I, Le Bozec H, Guerchais V (2011) Linear and nonlinear optical properties of cationic bipyridyl Iridium(III) complexes: tunable and photoswitchable? Inorg Chem 50(11):5027–5038CrossRefGoogle Scholar
  27. 27.
    Staykov A, Areephong J, Browne WR, Feringa BL, Yoshizawa K (2011) Electrochemical and photochemical cyclization and cycloreversion of diarylethenes and diarylethene-capped sexithiophene wires. ACS Nano 5(2):1165–1178CrossRefGoogle Scholar
  28. 28.
    Ordronneau L, Aubert V, Metivier R, Ishow E, Boixel J, Nakatani K, Ibersiene F, Hammoutene D, Boucekkine A, Le Bozec H, Guerchais V (2012) Tunable double photochromism of a family of bis-DTE bipyridine ligands and their dipolar Zn complexes. Phys Chem Chem Phys 14:2599–2605CrossRefGoogle Scholar
  29. 29.
    Fihey A, Perrier A, Maurel F (2012) Tuning the optical properties of dithienylethenes: theoretical insights. J Photochem Photobiol A Chem 247:30–41CrossRefGoogle Scholar
  30. 30.
    Nitadori H, Ordronneau L, Boixel J, Jacquemin D, Boucekkine A, Singh A, Akita M, Ledoux I, Guerchais V, Bozec HL (2012) Photoswitching of the second-order nonlinearity of a tetrahedral octupolar multi DTE-based copper(I) complex. Chem Commun 48:10395–10397CrossRefGoogle Scholar
  31. 31.
    Okuno K, Shigeta Y, Kishi R, Nakano M (2013) Non-empirical tuning of cam-b3lyp functional in time-dependent density functional theory for excitation energies of diarylethene derivatives. Chem Phys Lett 585:201–206CrossRefGoogle Scholar
  32. 32.
    Belfon KA, Gough JD (2013) Theoretical analysis of an all-photonic multifunctional molecular logic device: using TD-DFT//DFT to assess photochromic activity of multimeric photochrome. Chem Phys Lett 585:63–68CrossRefGoogle Scholar
  33. 33.
    Zhang M-Y, Wang C-H, Wang W-Y, Ma N-N, Sun S-L, Qiu Y-Q (2013) Strategy for enhancing second-order nonlinear optical properties of the Pt(II) dithienylethene complexes: substituent effect, π-conjugated influence, and photoisomerization switch. J Phys Chem A 117(47):12497–12510CrossRefGoogle Scholar
  34. 34.
    Boixel J, Guerchais V, Le Bozec H, Jacquemin D, Amar A, Boucekkine A, Colombo A, Dragonetti C, Marinotto D, Roberto D, Righetto S, De Angelis R (2014) Second-order NLO switches from molecules to polymer films based on photochromic cyclometalated platinum(II) complexes. J Am Chem Soc 136(14):5367–5375CrossRefGoogle Scholar
  35. 35.
    Chantzis A, Cerezo J, Perrier A, Santoro F, Jacquemin D (2014) Optical properties of diarylethenes with TD-DFT: 0–0 energies, fluorescence, stokes shifts, and vibronic shapes. J Chem Theory Comput 10(9):3944–3957CrossRefGoogle Scholar
  36. 36.
    Wiebeler C, Schumacher S (2014) Quantum yields and reaction times of photochromic diarylethenes: nonadiabatic ab initio molecular dynamics for normal- and inverse-type. J Phys Chem A 118(36):7816–7823CrossRefGoogle Scholar
  37. 37.
    Wiebeler C, Bader CA, Meier C, Schumacher S (2014) Optical spectrum, perceived color, refractive index, and non-adiabatic dynamics of the photochromic diarylethene CMTE. Phys Chem Chem Phys 16:14531–14538CrossRefGoogle Scholar
  38. 38.
    Isegawa M, Morokuma K (2015) Photochemical ring opening and closing of three isomers of diarylethene: spin–flip time-dependent density functional study. J Phys Chem A 119(18):4191–4199CrossRefGoogle Scholar
  39. 39.
    Bernardi F, Olivucci M, Robb MA (1992) Simulation of MCSCF results on covalent organic multi-bond reactions: molecular mechanics with valence bond (MMVB). J Am Chem Soc 114(5):1606–1616CrossRefGoogle Scholar
  40. 40.
    Worth GA, Bearpark GA, Robb MA (2005) Semiclassical nonadiabatic trajectory computations in photochemistry: is the reaction path enough to understand a photochemical reaction mechanism?, Elsevier, pp 171–190Google Scholar
  41. 41.
    Irie M, Mohri M (1988) Thermally irreversible photochromic systems. Reversible photocyclization of diarylethene derivative. J Org Chem 53:803–808CrossRefGoogle Scholar
  42. 42.
    Hanazawa M, Sumiya R, Horikawa Y, Irie M (1992) Thermally irreversible photochromic systems. Reversible photocyclization of 1,2-bis (2-methylbenzo[b]thiophen-3-yl)perfluorocyclocoalkene derivatives. J Chem Soc Chem Commun, pp 206–207Google Scholar
  43. 43.
    Uchida K, Irie M (1995) A photochromic dithienylethene that turns yellow by UV irradiation. Chem Lett 1995:969–970CrossRefGoogle Scholar
  44. 44.
    Irie M, Lifka T, Kobatake S, Kato N (2000) Photochromism of 1,2-bis(2-methyl-5-phenyl-3-thienyl)perfluorocyclopentene in a single-crystalline phase. J Am Chem Soc 122(20):4871–4876CrossRefGoogle Scholar
  45. 45.
    Tanaka N, Okabe C, Sakota K, Fukaminato T, Kawai T, Irie M, Goldberg A, Nakamura S, Sekiya H (2002) Electronic spectrum of a photochromic diarylethene derivative in a supersonic free jet. Internal conversion from s2(1b) to s1(2a). J Mol Struct 616(1–3):113–118CrossRefGoogle Scholar
  46. 46.
    Asano Y, Murakami A, Kobayashi T, Kobatake S, Irie M, Yabushita S, Nakamura S (2003) Theoretical study on novel quantum yields of dithienylethenes cyclization reactions in crystals. J Mol Struct (THEOCHEM) 625:227–234CrossRefGoogle Scholar
  47. 47.
    Tatsumi Y, Kitai J-I, Uchida W, Ogata K, Nakamura S, Uchida K (2012) Photochromism of 1,2-bis(2-thienyl)perfluorocyclopentene derivatives: substituent effect on the reactive carbon atoms. J Phys Chem A 116(45):10973–10979CrossRefGoogle Scholar
  48. 48.
    Uchida K, Tsuchida E, Aoi Y, Nakamura S, Irie M (1999) Substitution effect on the coloration quantum yield of a photochromic bisbenzothienylethene. Chem Lett 1999:63–64CrossRefGoogle Scholar
  49. 49.
    Uchida K, Guillaumont D, Tsuchida E, Mochizuki G, Irie M, Murakami A, Nakamura S (2002) Theoretical study of an intermediate, a factor determining the quantum yield in photochromism of diarylethene derivatives. J Mol Struct (THEOCHEM) 579:115–120CrossRefGoogle Scholar
  50. 50.
    Aloise S, Sliwa M, Buntinx G, Delbaere S, Perrier A, Maurel F, Jacquemin D, Takeshita M (2013) Do inverse dithienylethene behave as normal one? A joint spectroscopic and theoretical investigation. Phys Chem Chem Phys 15(17):6226–6234CrossRefGoogle Scholar
  51. 51.
    Irie M, Sakemura K, Okinaka M, Uchida K (1995) Photochromism of dithienylethenes with electron-donating substituents. J Org Chem 60:8305–8309CrossRefGoogle Scholar
  52. 52.
    Irie M, Lifka T, Uchida K, Kobatake S, Shindo Y (1999) Fatigue resistant properties of photochromic dithienylethenes: by-product formation. Chem Commun 0:747–750Google Scholar
  53. 53.
    Patel PD, Mikhailov IA, Belfield KD, Masunov AE (2009) Theoretical study of photochromic compounds. 2. Thermal mechanism for byproduct formation and fatigue resistance of diarylethenes used as data storage materials. Int J Quant Chem 109:3711–3722CrossRefGoogle Scholar
  54. 54.
    Herder M, Schmidt BM, Grubert L, Pätzel M, Schwarz J, Hecht S (2015) Improving the fatigue resistance of diarylethene switches. J Am Chem Soc 137(7):2738–2747CrossRefGoogle Scholar
  55. 55.
    Perpète EA, Jacquemin D (2007) An ab initio scheme for quantitative predictions of the visible spectra of diarylethenes. J Photochem Photobiol A Chem 187:40–44CrossRefGoogle Scholar
  56. 56.
    Jacquemin D, Perpète EA (2007) Evaluation ab initio de la couleur de diaryléthènes présentant un pont maléimide. C R Chimie 10:1227–1233CrossRefGoogle Scholar
  57. 57.
    Perpète EA, Maurel F, Jacquemin D (2007) TD-DFT investigation of diarylethene dyes with cyclopentene, dihydrothiophene and dihydropyrrole bridges. J Phys Chem A 111:5528–5535CrossRefGoogle Scholar
  58. 58.
    Jacquemin D, Wathelet V, Perpète EA, Adamo C (2009) Extensive TD-DFT benchmark: singlet-excited states of organic molecules. J Chem Theory Comput 5:2420–2435CrossRefGoogle Scholar
  59. 59.
    Jacquemin D, Perpète EA, Maurel F, Perrier A (2010) Doubly closing or not? Theoretical analysis for coupled photochomes. J Phys Chem C 114:9489–9497CrossRefGoogle Scholar
  60. 60.
    Gilat SL, Kawai SH, Lehn JM (1993) Light-triggered electrical and optical switching devices. J Chem Soc Chem Commun 1993:1439–1442CrossRefGoogle Scholar
  61. 61.
    Kim E, Kim M, Kim K (2006) Diarylethenes with intramolecular donor–acceptor structures for photo-induced electrochemical change. Tetrahedron 62(29):6814–6821CrossRefGoogle Scholar
  62. 62.
    Nishi H, Asahi T, Kobatake S (2011) Enhanced one-photon cycloreversion reaction of diarylethenes near individual gold nanoparticles. J Phys Chem C 115(11):4564–4570CrossRefGoogle Scholar
  63. 63.
    Link S, El-Sayed MA (2003) Optical properties and ultrafast dynamics of metallic nanocrystals. Annu Rev Phys Chem 54(1):331–366CrossRefGoogle Scholar
  64. 64.
    Myroshnychenko V, Rodriguez-Fernandez J, Pastoriza-Santos I, Funston AM, Novo C, Mulvaney P, Liz-Marzan LM, Garcia de Abajo FJ (2008) Modelling the optical response of gold nanoparticles. Chem Soc Rev 37:1792–1805CrossRefGoogle Scholar
  65. 65.
    Payton JL, Morton SM, Moore JE, Jensen L (2014) A hybrid atomistic electrodynamics–quantum mechanical approach for simulating surface-enhanced raman scattering. Acc Chem Res 47(1):88–99CrossRefGoogle Scholar
  66. 66.
    Fihey A, Maurel F, Perrier A (2015) Plasmon–excitation coupling for dithienylethene/gold nanoparticle hybrid systems: a theoretical study. J Phys Chem C 119(18):9995–10006CrossRefGoogle Scholar
  67. 67.
    Fihey A, Kloss B, Perrier A, Maurel F (2014) Density functional theory study of the conformation and optical properties of hybrid Aun–dithienylethene systems (n = 3, 19, 25). J Phys Chem A 118(26):4695–4706CrossRefGoogle Scholar
  68. 68.
    Fihey A, Maurel F, Perrier A (2014) A DFT study of a new class of gold nanocluster-photochrome multi-functional switches. Phys Chem Chem Phys 16:26240–26251CrossRefGoogle Scholar
  69. 69.
    Nitta H, Kawata I (2012) A close inspection of the charge-transfer excitation by TD-DFT with various functionals: an application of orbital- and density-based analyses. Chem Phys 405:93–99CrossRefGoogle Scholar
  70. 70.
    Ordronneau L, Aubert V, Guerchais V, Boucekkine A, Le Bozec H, Singh A, Ledoux I, Jacquemin D (2013) The first hexadithienylethene-substituted tris(bipyridine)metal complexes as quadratic NLO photoswitches: combined experimental an DFT studies. Chem Eur J 19:5845–5849Google Scholar
  71. 71.
    Boixel J, Guerchais V, Le Bozec H, Chantzis A, Jacquemin D, Colombo A, Dragonetti C, Marinotto D, Roberto D (2015) Sequential double second-order nonlinear optical switch by an acido-triggered photochromic cyclometallated platinum(II) complex. Chem Commun 51:7805–7808CrossRefGoogle Scholar
  72. 72.
    Song P, Gao A-H, Zhou P-W, Chu T-S (2012) Theoretical study on photoisomerization effect with a reversible nonlinear optical switch for dithiazolylarylene. J Phys Chem A 116(22):5392–5397CrossRefGoogle Scholar
  73. 73.
    Ma T-Y, Ma N-N, Yan L-K, Guan W, Su Z-M (2013) Theoretical studies on the photoisomerization-switchable second-order nonlinear optical responses of DTE-linked polyoxometalate derivatives. J Mol Graph Model 40:110–115CrossRefGoogle Scholar
  74. 74.
    Tian D-M, Ma N-N, Wang W-Y, Wang J, Zhu C-L, Qiu Y-Q (2014) Mechanistic insight into the second-order nonlinear optical properties of Ru-coordinated DTE complexes: photoisomerization, redox, and protonation switches. J Organomet Chem 772–773:100–106CrossRefGoogle Scholar
  75. 75.
    Chen KJ, Laurent AD, Jacquemin D (2014) Strategies for designing diarylethenes as efficient nonlinear optical switches. J Phys Chem C 118(8):4334–4345CrossRefGoogle Scholar
  76. 76.
    Jacquemin D, Perpète EA, Maurel F, Perrier A (2010) Ab initio investigation of the electronic properties of coupled dithienylethenes. J Phys Chem Lett 1:434–438CrossRefGoogle Scholar
  77. 77.
    Jacquemin D, Perpète EA, Maurel F, Perrier A (2010) TD-DFT simulations of the electronic properties of star-shaped photochromes. Phys Chem Chem Phys 12:7994–8000CrossRefGoogle Scholar
  78. 78.
    Jacquemin D, Perpète EA, Maurel F, Perrier A (2010) Simulation of the properties of a photochromic triad. J Phys Chem Lett 1:2104–2108CrossRefGoogle Scholar
  79. 79.
    Perrier A, Maurel F, Ciofini I, Jacquemin D (2011) A theoretical spectroscopy investigation of bifunctional platinum-bridged diarylethenes. Chem Phys Lett 502:77–81CrossRefGoogle Scholar
  80. 80.
    Perrier A, Maurel F, Jacquemin D (2011) Interplay between electronic and steric effects in multiphotochromic diarylethenes. J Phys Chem C 115:9193–9203CrossRefGoogle Scholar
  81. 81.
    Perrier A, Maurel F, Browne WR, Jacquemin D (2013) Full ring closing in a diarylethene hexamer: insights from theory. Chem Commun 49:4247–4249CrossRefGoogle Scholar
  82. 82.
    Fihey A, Jacquemin D (2015) Designing efficient photochromic dithienylethene dyads. Chem Sci 6(6):3495–3504CrossRefGoogle Scholar
  83. 83.
    Fihey A, Perrier A, Browne WR, Jacquemin D (2015) Multiphotochromic molecular systems. Chem Soc Rev 44(11):3719–3759CrossRefGoogle Scholar
  84. 84.
    Choi H, Jung I, Song KH, Song K, Shin DS, Kang SO, Ko J (2006) Synthesis and photochromic reactivity of diarylethene trimers bridged by ethenyl and ethynyl unit. Tetrahedron 62:9059–9065CrossRefGoogle Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  • Martial Boggio-Pasqua
    • 1
  • Aurélie Perrier
    • 2
    • 3
  • Arnaud Fihey
    • 4
  • Denis Jacquemin
    • 4
    • 5
  1. 1.LCPQ, UMR CNRS 5626Université de ToulouseToulouseFrance
  2. 2.ITODYS, UMR CNRS 7086Université Paris DiderotParis Cedex 13France
  3. 3.Institut de Recherche de Chimie Paris, CNRS—Chimie Paris Tech, PSL Research UniversityParis Cedex 05France
  4. 4.CEISAM, UMR CNRS 6230Université de NantesNantesFrance
  5. 5.Institut universitaire de FranceParisFrance

Personalised recommendations