NMR Spectroscopy to Investigate Switching Reactions

  • Stéphanie Delbaere


Despite its poor time resolution and low sensitivity compared with classical spectrophotometric methods, modern NMR is now a highly developed spectroscopy technique, appropriate for photochromism studies owing to its high spectral resolution and the large panel of NMR sequences that offer detailed structural and quantitative information. NMR spectroscopy can therefore be applied to answer questions concerning which compounds are produced, how they are formed, and how they evolve and behave within the photochromic reaction. In this chapter, we reported the characterization of the eight interconvertible states addressable selectively, offering the most complex multiaddressable molecule known to date; the reactivity of photochromic compounds associated with crown ethers for complexation with metal cations; and the behavior of hexaarylbiimidazole derivatives elucidated owing to a new experimental setup coupling NMR and in situ light irradiation.


Diarylethene Oxazolidine Chromene Hexaarybiimidazoles Complexation Metal cations In situ laser irradiation 



I am greatly indebted to my co-authors, i.e., the colleagues and students who have been engaged in the research work described here, performed within the framework of GDRI CNRS 93 “Phenics” (Photoswitchable Organic Molecular Systems & Devices).


  1. 1.
    Brown GH (ed) (1971) Photochromism. Wiley-Interscience, New YorkGoogle Scholar
  2. 2.
    Durr H, Bouas-Laurent H (eds) (1990) Photochromism: molecules and systems. Elsevier, AmsterdamGoogle Scholar
  3. 3.
    Fukumura H, Irie M, Iwasawa Y, Masuhara H, Uosaki K (eds) (2008) Molecular nano dynamics, vols 1 and 2. Wiley VCH, WeinheimGoogle Scholar
  4. 4.
    Feringa BL, Jager WF, de Lange B (1993) Organic materials for reversible optical data storage. Tetrahedron 49:8267–8310CrossRefGoogle Scholar
  5. 5.
    Irie M, Mohri M (1988) Thermally irreversible photochromic systems. Reversible photocyclization of diarylethene derivatives. J Org Chem 53:803–808CrossRefGoogle Scholar
  6. 6.
    Irie M (2000) Diarylethenes for memories and switches. Chem Rev 100:1685–1716CrossRefGoogle Scholar
  7. 7.
    Van Gemert B (1999) Benzo and naphthopyrans (Chromenes). In: Crano JC, Gugliemetti RJ (eds) Organic photochromic and thermochromic compounds, vol 1. Kluwer Academic Publishers, New York, pp 111–140Google Scholar
  8. 8.
    Abe J (2013) Fast photochromism of bridged imadazoles dimers. In: Irie M, Yokoyama Y, Seki T (eds) New frontiers in photochromism. Springer, Japan, pp 161–181CrossRefGoogle Scholar
  9. 9.
    Andréasson J, Pischel U (2013) Storage and processing of information using molecules: the all-photonic approach with simple and multi-photochromic switches. Isr J Chem 53:236–246CrossRefGoogle Scholar
  10. 10.
    Sanguinet L, Pozzo JL, Rodriguez V, Adamietz F, Castet F, Ducasse L, Champagne B (2005) Acido- and phototriggered NLO properties enhancement. J Phys Chem B 109:11139–11150CrossRefGoogle Scholar
  11. 11.
    Petkov I, Charra F, Nunzi JM, Deligeorgiev T (1999) Photochemistry of 2-[(1,3,3-trimethylindoline-2(1H)-ylidene)propen-1-yl]-3,3-dimethylindolino[1,2-b]-oxazolidine in solution. J Photochem Photobiol A 128:93–96CrossRefGoogle Scholar
  12. 12.
    Sertova N, Ninzu JM, Petkov I, Deligeorgiev T (1998) Photochromism of styryl cyanine dyes in solution. J Photochem Photobiol A 112:187–190CrossRefGoogle Scholar
  13. 13.
    Kawami S, Yoshioka H, Nakatsu K, Okozaki T, Hayami M (1987) X-ray structures of electrochromic compounds. Colorless 3,3-dimethyl-2-(p-dimethylaminostyryl)indolino-[1,2-b]oxazoline and colored 2-(p-dimethylaminostyryl)-1-hydroxyethyl-3,3-dimethylindolinium Bromide. Chem Lett 16:711–714CrossRefGoogle Scholar
  14. 14.
    Szaloki G, Sevez G, Berthet J, Pozzo JL, Delbaere S (2014) A simple molecule-based octastate switch. J Am Chem Soc 136:13510–13513CrossRefGoogle Scholar
  15. 15.
    Gabbutt C, Heron B, Instone A, Horton P, Hursthouse M (2005) Synthesis and photochromic properties of substituted 3H-naphtho[2,1-b]pyrans. Tetrahedron 61:463–471CrossRefGoogle Scholar
  16. 16.
    Coelho PJ, Salvador MA, Oliveira MM, Carvalho LM (2005) Photochemical and thermal behaviour of new photochromic indeno-fused naphthopyrans. J Photochem Photobiol A 172:300–307CrossRefGoogle Scholar
  17. 17.
    Frigoli M, Mehl HH (2004) Room temperature photochromic liquid crystal [3H]-naphtho[2,1-b]pyrans—photochromism in the mesomorphic state. Chem Commun 18:2040–2204CrossRefGoogle Scholar
  18. 18.
    Inouye M, Ueno M, Tsuchiya K, Nakayama N, Konishi T, Kitao T (1992) Alkali-metal cation recognition induced isomerization of spirobenzopyrans and spironaphthoxazins possessing a crown ring as a recognition site: multifunctional artificial receptors. J Org Chem 57:5377–5383CrossRefGoogle Scholar
  19. 19.
    Minkin VI (2004) Photo-, thermo-, solvato-, and electrochromic spiroheterocyclic compounds. Chem Rev 104:2751–2776CrossRefGoogle Scholar
  20. 20.
    Fedorova OA, Ushakov EN, Fedorov YV, Strokach YP, Gromov SP (2005) Macrocyclic systems with photoswitchable functions. In: Gloe K (ed) Macrocyclic chemistry: current trends and future perspectives. Springer, Dordrecht, Berlin, pp 235–252CrossRefGoogle Scholar
  21. 21.
    Fedorova OA, Maurel F, Chebun’kova AV, Strokach YP, Valova TM, Kuzmina LG, Howard JAK, Wenzel M, Gloe K, Lokshin V, Samat A (2007) Investigation of cation complexation behavior of azacrown ether substituted benzochromene. J Phys Org Chem 20:469–483Google Scholar
  22. 22.
    Stauffer MT, Knowles DB, Brennan C, Funderburk L, Lin FT, Weber SG (1997) Optical control over Pb2+ binding to a crown ether-containing chromene. Chem Commun 3:287–288CrossRefGoogle Scholar
  23. 23.
    Ahmed SA, Tanaka M, Ando H, Iwamoto H, Kimura K (2003) Synthesis and photochromism of novel chromene derivatives bearing a monoazacrown ether moiety. Eur J Org Chem 2003:2437–2442CrossRefGoogle Scholar
  24. 24.
    Fedorova OA, Maurel F, Ushakov EN, Nazarov VB, Gromov SP, Chebunkova AV, Feofanov AV, Alaverdian IS, Alfimov MV, Barigelletti F (2003) Synthesis, photochromic behaviour and light-controlled complexation of 3,3-diphenyl-3H-benzo[f]chromenes containing a dimethylamino group or an aza-15-crown-5 ether unit. New J Chem 27:1720–1730CrossRefGoogle Scholar
  25. 25.
    Flink S, Boukamp BA, Van den Berg A, van Veggel FCJM, Reinhoudt DN (1998) Electrochemical detection of electrochemically inactive cations by self-assembled monolayers of crown ethers. J Am Chem Soc 120:4652–4657CrossRefGoogle Scholar
  26. 26.
    Flink S, van Veggel FCJM, Reinhoudt DN (1999) Recognition of cations by self-assembled monolayers of crown ethers. J Phys Chem B 103:6515–6520CrossRefGoogle Scholar
  27. 27.
    Paramonov S, Delbaere S, Fedorova OA, Fedorov YV, Lokshin V, Samat A, Vermeersch G (2010) Structural and photochemical aspect of metal-ion-binding to a photochromic chromene annulated by crown ether moiety. J Photochem Photobiol A 209:111–120CrossRefGoogle Scholar
  28. 28.
    Jeener J, Meier BH, Bachmann P, Ernst R (1979) Unified derivation of the dipolar field and relaxation terms in the bloch-redfield equations of liquid NMR. J Chem Phys 71:4546–4553CrossRefGoogle Scholar
  29. 29.
    Paramonov S, Lokshin V, Smolentsev AB, Glebov EM, Korolev VV, Basok SS, Lysenko KA, Delbaere S, Fedorova OA (2012) Synthesis, metal ion binding and photochromic properties of benzo- and naphthopyrans annelated by crown ether moieties. Tetrahedron 68:7873–7883CrossRefGoogle Scholar
  30. 30.
    Tulyakova EV, Fedorova OA, Paramonov S, Lokshin V, Vermeersch G, Delbaere S (2011) Photochromism and metal-complexation of a macrocyclic styryl naphthopyran. ChemPhysChem 12:1294–1301CrossRefGoogle Scholar
  31. 31.
    Pons M, Millet O (2001) Dynamic NMR studies of supramolecular complexes. Prog Nucl Mag Reson Spectrosc 38:267–324CrossRefGoogle Scholar
  32. 32.
    Pastor A, Martínez-Viviente E (2008) NMR spectroscopy in coordination supramolecular chemistry: a unique and powerful methodology. Coord Chem Rev 252:2314–2345CrossRefGoogle Scholar
  33. 33.
    Pregosin PS, Kumar PGA, Fernández I (2005) Pulsed gradient spin-echo (PGSE) diffusion and 1H,19F heteronuclear overhauser spectroscopy (HOESY) NMR methods in inorganic and organometallic chemistry: something old and something new. Chem Rev 105:2977–2998CrossRefGoogle Scholar
  34. 34.
    Loening NM, Keeler J, Morris GA (2001) One-dimensional DOSY. J Magn Reson 153:103–112CrossRefGoogle Scholar
  35. 35.
    Johnson CS Jr (1999) Diffusion ordered nuclear magnetic resonance spectroscopy: principles and applications. Prog Nucl Mag Reson Spectrosc 34:203–256CrossRefGoogle Scholar
  36. 36.
    Hansen S (2004) Translational friction coefficients for cylinders of arbitrary axial ratios estimated by Monte Carlo simulation. J Chem Phys 121:9111–9115CrossRefGoogle Scholar
  37. 37.
    Allouche L, Marquis A, Lehn JM (2006) Discrimination of metallosupramolecular architectures in solution by using diffusion ordered spectroscopy (DOSY) experiments: double-stranded helicates of different lengths. Chem Eur J 12:7520–7525CrossRefGoogle Scholar
  38. 38.
    Tulyakova EV, Vermeersch G, Gulakova EN, Fedorova OA, Fedorov YV, Micheau JC, Delbaere S (2010) Metal ions drive thermodynamics and photochemistry of the bis(styryl) macrocyclic tweezer. Chem Eur J 16:5661–5671CrossRefGoogle Scholar
  39. 39.
    Tulyakova E, Delbaere S, Fedorov Y, Jonusauskas G, Moiseeva A, Fedorova OA (2011) Multimodal metal cation sensing with bis(macrocyclic) dye. Chem Eur J 17:10572–10762Google Scholar
  40. 40.
    Delbaere S, Tulyakova EV, Marmois E, Jonusauskas G, Gulakova EN, Fedorov Y, Fedorova OA (2013) Metal-ion induced FRET in macrocyclic dynamic tweezers. Tetrahedron 69:8178–8185CrossRefGoogle Scholar
  41. 41.
    Hayashi T, Maeda K (1960) Preparation of a new photptropic substance. Bull Chem Soc Jpn 33:565–566CrossRefGoogle Scholar
  42. 42.
    Hayashi T, Maeda K (1962) Mechanism of chemiluminescence of 2,4,5-triphenylimidazole. Bull Chem Soc Jpn 35:2057–2058CrossRefGoogle Scholar
  43. 43.
    Hayashi T, Maeda K (1963) A new phenomenon of storage light energy by solution of photochromatic 1,1′-Bi(2,4,5-triphenylimidazyl) at low temperatures. Bull Chem Soc Jpn 36:1052–1053CrossRefGoogle Scholar
  44. 44.
    Hayashi T, Maeda K, Morinaga M (1964) The mechanism of the photochromism and thermochromism of 2, 2′, 4, 4′, 5, 5′-Hexaphenyl-1,1′-biimidazolyl. Bull Chem Soc Jpn 37:1563–1564CrossRefGoogle Scholar
  45. 45.
    Zimmermann H, Baumgartei H, Bakke F (1961) 1.1′-Bis-pyrryle, 1.l′-Bis-imidazyle und ihre dissoziation in radikale. Angew Chem 78:808Google Scholar
  46. 46.
    Hayashi T, Maeda K (1970) The mechanism of photochromism, thermochromism and piezochromism of dimers of triarylimidazolyl. Bull Chem Soc Jpn 43:429–438CrossRefGoogle Scholar
  47. 47.
    White DM, Sonnenberg J (1966) Oxidation of triarylimidazoles. Structures of the photochromic and piezochromic dimers of triarylimidazyl radicals. J Am Chem Soc 88:3825–3829CrossRefGoogle Scholar
  48. 48.
    Tanino H, Kondo T, Okada K, Goto T (1972) Structures of three isomeric dimers of 2,4,5-triphenylimidazolyl. Bull Chem Soc Jpn 45:1474–1480CrossRefGoogle Scholar
  49. 49.
    Dessauer R (ed) (2006) Photochemistry. History and commercial applications of hexaarylbiimidazoles, Elsevier, AmsterdamGoogle Scholar
  50. 50.
    Kawano M, Sano T, Abe J, Ohashi Y (1999) The first in situ direct observation of the light-induced radical pair from a hexaarylbiimidazolyl derivative by X-ray crystallography. J Am Chem Soc 121:8106–8107CrossRefGoogle Scholar
  51. 51.
    Abe J, Sano T, Kawano M, Ohashi Y, Matsushita MM, Iyoda T (2001) EPR and density functional studies of light-induced radical pairs in a single crystal of a hexaarylbiimidazolyl derivative. Angew Chem Int Ed 40:580–582CrossRefGoogle Scholar
  52. 52.
    Fujita K, Hatano S, Kato D, Abe J (2008) Photochromism of a radical diffusion-inhibited hexaarylbiimidazole derivative with intense coloration and fast decoloration performance. Org Lett 10:3105–3108CrossRefGoogle Scholar
  53. 53.
    Hatano S, Abe J (2008) Activation parameters for the recombination reaction of intramolecular radical pairs generated from the radical diffusion-inhibited HABI derivative. J Phys Chem A 112:6098–6103CrossRefGoogle Scholar
  54. 54.
    Miyamoto Y, Kikuchi A, Iwahori F, Abe J (2005) Synthesis and photochemical properties of a photochromic Iron(II) complex of hexaarylbiimidazole. J Phys Chem A 109:10183–10188CrossRefGoogle Scholar
  55. 55.
    Kikuchi A, Iwahori F, Abe J (2004) Definitive evidence for the contribution of biradical character in a closed-shell molecule, derivative of 1,4-Bis-(4,5-diphenylimidazol-2-ylidene)cyclohexa-2,5-diene. J Am Chem Soc 126:6526–6527CrossRefGoogle Scholar
  56. 56.
    Delbaere S, Orio M, Berthet J, Sliwa M, Hatano S, Abe J (2013) Insights into the recombination of radical pairs in hexaarylbiimidazoles. Chem Commun 49:5841–5843CrossRefGoogle Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  1. 1.University of Lille, UDSLLilleFrance

Personalised recommendations