Photo-Modulation of Superconducting and Magnetic Properties

  • Takashi Yamamoto
  • Keisuke Natsui
  • Yasuaki Einaga


In this chapter, photo-modulation of superconducting and magnetic properties is described. First, the superconducting property of a boron-doped diamond is investigated, in which the critical current density varies dramatically between the hydrogen- and oxygen-terminated diamond. Second, the superconducting diamond is modified with an azobenzene molecular layer to modulate the superconductivity upon photoirradiation. In this composite superconductor, the critical current density is reversibly amplified by 55% upon photoisomerization of the azobenzene layer. Third, Prussian Blue, a coordination polymer, is integrated with the semiconducting titanium oxide nanosheets to modulate the magnetic property upon photoirradiation. In this magnetic heterostructure, photoinduced magnetic phase transition of Prussian Blue is present by injecting photoexcited electrons from titanium oxide nanosheets.


Superconductivity Magnetism Photoswitching Thin films 


  1. 1.
    Browne WR, Feringa BL (2009) Light switching of molecules on surfaces. Annu Rev Phys Chem 60:407–428CrossRefGoogle Scholar
  2. 2.
    Sato O, Hayami S, Einaga Y, Gu ZZ (2003) Control of the magnetic and optical properties in molecular compounds by electrochemical, photochemical and chemical methods. Bull Chem Soc Jpn 76:443–470CrossRefGoogle Scholar
  3. 3.
    Mayer G, Heckel A (2006) Biologically active molecules with a “light switch”. Angew Chem Int Ed 45:4900–4921CrossRefGoogle Scholar
  4. 4.
    Irie M (2000) Photochromism: memories and switches. Chem Rev 100:1683–1684CrossRefGoogle Scholar
  5. 5.
    Matsuda K, Yamaguchi H, Sakano T, Ikeda M, Tanifuji N, Irie M (2008) Conductance photoswitching of diarylethene-gold nanoparticle network induced by photochromic reaction. J Phys Chem C 112:17005–17010CrossRefGoogle Scholar
  6. 6.
    Carling CJ, Boyer JC, Branda NR (2009) Remote-control photoswitching using NIR light. J Am Chem Soc 131:10838–10839CrossRefGoogle Scholar
  7. 7.
    Crivillers N, Orgiu E, Reinders F, Mayor M, Samori P (2011) Optical modulation of the charge injection in an organic field-effect transistor based on photochromic self-assembled-monolayer-functionalized electrodes. Adv Mater 23:1447–1452CrossRefGoogle Scholar
  8. 8.
    Suda M, Nakagawa M, Iyoda T, Einaga Y (2007) Reversible photoswitching of ferromagnetic FePt nanoparticles at room temperature. J Am Chem Soc 129:5538–5543CrossRefGoogle Scholar
  9. 9.
    Suda M, Kameyama N, Suzuki M, Kawamura N, Einaga Y (2008) Reversible phototuning of ferromagnetism at Au–S interfaces at room temperature. Angew Chem Int Ed 47:160–163CrossRefGoogle Scholar
  10. 10.
    Yamamoto T, Umemura Y, Sato O, Einaga Y (2004) Photoswitchable magnetic films: Prussian Blue intercalated in Langmuir-Blodgett films consisting of an amphiphilic azobenzene and a clay mineral. Chem Mater 16:1195–1201CrossRefGoogle Scholar
  11. 11.
    Suda M, Einaga Y (2009) Sequential assembly of phototunable ferromagnetic ultrathin films with perpendicular magnetic anisotropy. Angew Chem Int Ed 48:1754–1757CrossRefGoogle Scholar
  12. 12.
    Ikegami A, Suda M, Watanabe T, Einaga Y (2010) Reversible optical manipulation of superconductivity. Angew Chem Int Ed 49:372–374CrossRefGoogle Scholar
  13. 13.
    Bullock DJW, Cumper CWN, Vogel AI (1965) Physical properties and chemical constitution. Part XLIII. The electric dipole moments of azobenzene, azopyridines, and azoquinolines. J Chem Soc 5316–5323Google Scholar
  14. 14.
    Carmeli I, Lewin A, Flekser E, Diamant I, Zhang Q, Shen J, Gozin M, Richter S, Dagan Y (2012) Tuning the critical temperature of cuprate superconductor films with self-assembled organic layers. Angew Chem Int Ed 51:7162–7165CrossRefGoogle Scholar
  15. 15.
    Ekimov EA, Sidorov VA, Bauer ED, Mel’nik NN, Curro NJ, Thompson JD, Stishov SM (2004) Superconductivity in diamond. Nature 428:542–545Google Scholar
  16. 16.
    McMillan WL (1968) Transition temperature of strong-coupled superconductors. Phys Rev 167:331–344CrossRefGoogle Scholar
  17. 17.
    Takano Y (2009) Superconductivity in CVD diamond films. J Phys: Condens Matter 21:253201–253211Google Scholar
  18. 18.
    Szunerits S, Boukherroub R (2008) Different strategies for functionalization of diamond surfaces. J Solid State Electrochem 12:1205–1218CrossRefGoogle Scholar
  19. 19.
    Maier F, Riedel M, Mantel B, Ristein J, Ley L (2000) Origin of surface conductivity in diamond. Phys Rev Lett 85:3472–3475CrossRefGoogle Scholar
  20. 20.
    Natsui K, Yamamoto T, Watanabe T, Kamihara Y, Einaga Y (2013) Modulation of critical current density in polycrystalline boron-doped diamond by surface modification. Phys Status Solidi B 250:1943–1949CrossRefGoogle Scholar
  21. 21.
    Gyorgy EM, van Dover RB, Jackson KA, Schneemeyer LF, Waszczak JV (1989) Anisotropic critical currents in Ba2YCu3O7 analyzed using an extended Bean model. Appl Phys Lett 55:283–285CrossRefGoogle Scholar
  22. 22.
    Dahlem F, Achatz P, Williams OA, Araujo D, Bustarret E, Courtois H (2010) Spatially correlated microstructure and superconductivity in polycrystalline boron-doped diamond. Phys Rev B 82:033306-4Google Scholar
  23. 23.
    Watanabe M, Kanomata R, Kurihara S, Kawano A, Kitagoh S, Yamaguchi T, Takano Y, Kawarada H (2012) Vertical SNS weak-link Josephson junction fabricated from only boron-doped diamond. Phys Rev B 85:184516-5Google Scholar
  24. 24.
    Einaga Y (2010) Diamond electrodes for electrochemical analysis. J Appl Electrochem 40:1807–1816CrossRefGoogle Scholar
  25. 25.
    Pinson J, Podvorica F (2005) Attachment of organic layers to conductive or semiconductive surfaces by reduction of diazonium salts. Chem Soc Rev 34:429–439CrossRefGoogle Scholar
  26. 26.
    Leroux YR, Fei H, Noël JM, Roux C, Hapiot P (2010) Efficient covalent modification of a carbon surface: use of a silyl protecting group to form an active monolayer. J Am Chem Soc 132:14039–14041CrossRefGoogle Scholar
  27. 27.
    Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40:2004–2021CrossRefGoogle Scholar
  28. 28.
    Natsui K, Yamamoto T, Akahori M, Einaga Y (2015) Photochromism-induced amplification of critical current density in superconducting boron-doped diamond with an azobenzene molecular layer. ACS Appl Mater Interfaces 7:887–894CrossRefGoogle Scholar
  29. 29.
    Rodrigo MA, Michaud PA, Duo I, Panizza M, Cerisola G, Comninellis Ch (2010) Oxidation of 4-chlorophenol at boron-doped diamond electrode for wastewater treatment. J Electrochem Soc 148:D60–D64CrossRefGoogle Scholar
  30. 30.
    Chen P, McCreery RL (1996) Control of electron transfer kinetics at glassy carbon electrodes by specific surface modification. Anal Chem 68:3958–3965CrossRefGoogle Scholar
  31. 31.
    Leroux YR, Hapiot P (2013) Photo-modulation of the permeation in azobenzene derivatives monolayer films electrografted on carbon substrates. Electrochem Commun 33:107–110CrossRefGoogle Scholar
  32. 32.
    Naito T, Horie K, Mita I (1991) Photochemistry in polymer solids. 11. The effects of the size of reaction groups and the mode of photoisomerization on photochromic reactions in polycarbonate film. Macromolecules 24:2907–2911CrossRefGoogle Scholar
  33. 33.
    Suda M, Kameyama N, Ikegami A, Einaga Y (2009) Reversible phototuning of the large anisotropic magnetization at the interface between a self-assembled photochromic monolayer and gold. J Am Chem Soc 131:865–870CrossRefGoogle Scholar
  34. 34.
    Yamamoto T, Umemura Y, Einaga Y (2013) Structure-distortion-induced photomagnetic effect in azobenzene/polyoxometalate Langmuir-Blodgett Films. Dalton Trans 42:16014–16020CrossRefGoogle Scholar
  35. 35.
    Wang L, Sasaki T (2015) Titanium oxide nanosheets: graphene analogues with versatile functionalities. Chem Rev 114:9455–9486CrossRefGoogle Scholar
  36. 36.
    Yamamoto T, Saso N, Umemura Y, Einaga Y (2009) Photoreduction of Prussian Blue intercalated into titania nanosheet ultrathin films. J Am Chem Soc 131:13196–13197CrossRefGoogle Scholar
  37. 37.
    Sasaki T, Watanabe M (1998) Osmotic swelling to exfoliation. Exceptionally high degrees of hydration of a layered titanate. J Am Chem Soc 120:4682–4689CrossRefGoogle Scholar
  38. 38.
    Itaya K, Ataka T, Toshima S (1982) Spectroelectrochemistry and electrochemical preparation method of Prussian Blue modified electrodes. J Am Chem Soc 104:4767–4772CrossRefGoogle Scholar
  39. 39.
    Duonghong D, Ramsden J, Grätzel M (1982) Dynamics of interfacial electron-transfer processes in colloidal semiconductor systems. J Am Chem Soc 104:2977–2985CrossRefGoogle Scholar
  40. 40.
    Nishizawa M, Kuwabata S, Yoneyama H (1996) Photoimage formation in a TiO2 Particle-incorporated Prussian Blue film. J Electrochem Soc 143:3462–3465CrossRefGoogle Scholar
  41. 41.
    Sakai N, Ebina Y, Takada K, Sasaki T (2004) Electronic band structure of titania semiconductor nanosheets revealed by electrochemical and photoelectrochemical studies. J Am Chem Soc 126:5851–5858CrossRefGoogle Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  • Takashi Yamamoto
    • 1
  • Keisuke Natsui
    • 1
  • Yasuaki Einaga
    • 1
  1. 1.Department of ChemistryKeio UniversityYokohamaJapan

Personalised recommendations