Polyfunctional Photochromic Magnetic Materials Based on 3D Metal (Tris) Oxalates

  • Sergey M. Aldoshin
  • Nataliya A. Sanina


In the present chapter theoretical and experimental approaches have been described to the design of compounds, which combine in the same molecule both photochemical activity and magnetism and can be the basis for creation of materials with desired properties and functions, including highly pure composites and nanomaterials. The data on synthesis, structure, and investigation of magnetic properties of para- and ferromagnetic (tris)oxalate complexes of 3D metals with various organic photochromic cations have been presented, as well as their arrangement in ordered nanostructures and polymeric composites.


Polyfunctional compounds (Tris)oxalates Salts of spiropyrans Chromenes Dihetarylethenes Highly branched polymers Nanostructures Synthesis X-ray analysis UV spectroscopy Femtosecond spectroscopy Electron paramagnetic resonance SQUID magnetometry 



We are indebted to our co-authors, the colleagues who have been involved in the research work described here. We would like to gratefully acknowledge the support from the Program of Presidium of RAS “Bases of fundamental research of nanotechnologies and nanomaterials” and Federal Agency of Scientific Organizations (State registration N 0089-2014-0026).


  1. 1.
    Durr H, Bouas-Laurent H (eds) (2003) Photochromism: molecules and systems, revised edn. Elsevier, AmsterdamGoogle Scholar
  2. 2.
    Kawata S, Kawata Y (2000) Three-dimensional optical data storage using photochromic materials. Chem Rev 100(5):1777–1788CrossRefGoogle Scholar
  3. 3.
    Crano JC, Guglielmetti RJ (1999) Organic photochromic. Thermochromic Compounds, Plenum, New York, p 2Google Scholar
  4. 4.
    Irie M (2000) Diarylethenes for memories and switches. Chem Rev 10(100):1685–1716CrossRefGoogle Scholar
  5. 5.
    Irie M, Fukaminato T, Sasaki T, Tamai N, Kawai T (2002) Organic chemistry: a digital fluorescent molecular photoswitch. Nature 420:759–760CrossRefGoogle Scholar
  6. 6.
    Feringa BL (ed) (2001) Molecular switches. Wiley-VCH, WeinheimGoogle Scholar
  7. 7.
    Li Y, Zhang H, Qi Ch, Cuo X (2012) Light-driven photochromism-induced reversible switching in P3HT–spiropyran hybrid transistors. J Mater Chem 22:4261–4265CrossRefGoogle Scholar
  8. 8.
    Frolova LA, Troshin PA, Susarova DK, Kulikov AV, Sanina NA, Aldoshin SM (2015) Photoswitchable organic field-effect transistors and memory elements comprising an interfacial photochromic layer. Chem Commun 51:6130–6132CrossRefGoogle Scholar
  9. 9.
    de Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97:1515–1566CrossRefGoogle Scholar
  10. 10.
    Irie M, Seki T, Yokoyama Y (eds) (2013) New frontiers in photochromism. Springer, Tokyo, JapanGoogle Scholar
  11. 11.
    Aldoshin SM (2008) Heading to photoswitchable magnets. J Photochem Photobiol 200:19–33CrossRefGoogle Scholar
  12. 12.
    Ovcharenko VI, Sagdeev RZ (1999) Molecular ferromagnets. Russ Chem Rev 68:345–363CrossRefGoogle Scholar
  13. 13.
    Tamaki H, Zhong ZJ, Matsumoto N, Kida S, Koikawa M, Achiwa N, Hashimoto Y, Okawa H (1992) Design of metal-complex magnets. Syntheses and magnetic properties of mixed-metal assemblies {NBu4[MCr(ox)3]}x (NBu4+ = tetra(n-butyl)ammonium ion; ox2- = oxalate ion; M = Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+). J Am Chem Soc 114(18):6974–6979CrossRefGoogle Scholar
  14. 14.
    Atovmyan LO, Shilov GV, Lyubovskaya RN, Zhilyaeva EI, Ovanesyan NS, Morozov YuG, Pirumova SI, Gusakovskaya IG (1993) Crystal structure of the molecular ferromagnet NBu4[MnCr(C2O4)3] (Bu = n-C4H9). JETP Lett 58(10):766–769Google Scholar
  15. 15.
    Decurtins S, Schmalle HW, Oswald HR, Linden A, Ensling J, Gütlich P, Hauser A (1994) A polymeric two-dimensional mixed-metal network. Crystal structure and magnetic properties of {[P(Ph)4][MnCr(ox)3]}. Inorg Chim Acta 216(1–2):65–67CrossRefGoogle Scholar
  16. 16.
    Clemente-Léon M, Coronado E, Galán-Mascarós JR, Gómez-García CJ (1997) Intercalation of decamethylferrocenium cations in bimetallic oxalate-bridged two-dimensional magnets. Chem Commun 17:1727–1728CrossRefGoogle Scholar
  17. 17.
    Coronado E, Day P (2004) Magnetic molecular conductors. Chem Rev 104:5419–5448CrossRefGoogle Scholar
  18. 18.
    Bénard S, Yu P, Audière JP, Rivière E, Clément R, Guilhem J, Tchertanov L, Nakatani K (2000) Structure and NLO properties of layered bimetallic oxalato-bridged ferromagnetic networks containing stilbazolium-shaped chromophores. J Amer Chem Soc 122(39):9444–9454CrossRefGoogle Scholar
  19. 19.
    Gruselle M, Li Y, Ovanesyan N, Makhaev V, Shilov G, Mushenok F, Train C, Aldoshin S (2013) (S)-(-)-(2-MeBu) N(Pr)2MeI salt as template in the enantioselective synthesis of the enantiopure two-dimensional (S)-(-)-(2-MeBu)N(Pr)2Me [ΛMnΔCr (C2O4)3] ferromagnet. Chirality 25:444–448CrossRefGoogle Scholar
  20. 20.
    Nikitina ZK, Ovanesyan NS, Makhaev VD, Shilov GV, Aldoshin SM (2011) Bimetallic chloranilate complexes (R4E)[MIIFeIII(C6O4Cl2)3] (R4E = Bu4 N, Ph4P; MII = Mn, Fe Co, Ni, Cu): synthesis, characteristics, and magnetic properties. Dokl Chem 437(2):129–132CrossRefGoogle Scholar
  21. 21.
    Korchagin DV, Utenyshev AN, Bozhenko KV, Sanina NA, Aldoshin SM (2011) Magnetic exchange coupling in transition metal complexes with bidentate bridging ligands: a quantum chemical study. Russ Chem Bull 60(6):1040–1044CrossRefGoogle Scholar
  22. 22.
    Aldoshin SM, Nikonova LA, Smirnov VA, Shilov GV, Nagaeva NK (2005) Structure and photochromic properties of a single-crystalline spiro[indolinepyranopyridinium] salt. Russ Chem Bull 9:2113–2118CrossRefGoogle Scholar
  23. 23.
    Aldoshin SM, Nikonova LA, Smirnov VA, Shilov GV, Nagaeva NK (2005) Structure and photochromic properties of single crystals of spiropyran salts. J Mol Struct 750:158–165CrossRefGoogle Scholar
  24. 24.
    Aldoshin SM, Nikonova LA, Shilov GV, Bikanina EA, Artemova NK, Smirnov VA (2006) The influence of an N-substituent in the indoline fragment of pyrano-pyridine spiropyran salts on their crystalline structure and photochromic properties. J Mol Struct 794:103–109CrossRefGoogle Scholar
  25. 25.
    Artemova NK, Smirnov VA, Rogachev BG, Shilov GV, Aldoshin SM (2006) photo- and thermochromic properties of 1′,3′,3′-trimethyl-6-nitro-8-pyridiniomethylspiro[2H-[1]benzopyran-2,2′-indoline] chloride in the crystalline state. Russ Chem Bull 9:1605–1611CrossRefGoogle Scholar
  26. 26.
    Tkachev VV, Aldoshin SM, Sanina NA, Lukyanov BS, Minkin VI, Utenyshev AN, Khalanskiy KN, Alekseenko YuS (2007) Photo- and thermochromic spiranes. 29. New photochromic indolinospiropyrans containing a quinoline fragment. Chem Heterocycl Comp 43(5):576–586CrossRefGoogle Scholar
  27. 27.
    Aldoshin SM, Sanina NA, Morgunov RB, Fedorova OA, Paramonov SV, Lokshin VB, Mushenok FB, Shilov GV, Bozhenko KV, Korchagin DV (2010) Ferromagnetism, paramagnetism, and thermally induced magnetism in photomagnetic CrIII/MnII and CrIII oxalates with the 7-methyl-3,3-diphenyl-3H-pyrano[3,2-f]quinolinium cation. Russ Chem Bull 59(3):497–509CrossRefGoogle Scholar
  28. 28.
    Aldoshin SM, Yur’eva EA, Sanina NA, Krayushkin MM, Tsyganov DV, Gostev FE, Shelaev IV, Sarkisov OM, Nadtochenko VA (2011) Femtosecond dynamics of photocyclization of 1-[(4-{5-[4-chloromethyl-2,5-dimethyl-3-thienyl]-2-oxo-1,3-dioxol-4-yl}-2,5-dimethyl-3-thienyl)methyl]pyridinium chloride. Russ Chem Bull 60(6):1118–1127CrossRefGoogle Scholar
  29. 29.
    Shirinian VZ, Shimkin AA, Lonshakov DV, Lvov AG, Krayushkin MM (2013) Synthesis and spectral properties of a novel family of photochromic diarylethenes-2,3-diarylcyclopent-2-en-1-ones. J Photochem Photobiol A 233:1–14CrossRefGoogle Scholar
  30. 30.
    Aldoshin SM, Yurieva EA, Shilov GV, Nikonova LA, Nadtochenko VA, Kurganova EV, Morgunov RB (2008) Structure and photochromic and magnetic properties of 1-isopropyl-3,3,5′,6′-tetramethylspiro[indoline-2,2′-2H-pyrano[3,2-b]pyridinium] tris(oxalato)chromate(III). Russ Chem Bull 57(12):2592–2599CrossRefGoogle Scholar
  31. 31.
    Aldoshin SM, Sanina NA, Yurieva EA, Shilov GV, Kurganova EV, Morgunov RB, Luk’yanov BS, Minkin VI (2008) Synthesis, structure, and the photomagnetic effect in crystals of 1,3,3,7′-tetramethylspiro[indoline-2,2′-2H-pyrano[3,2-f]quinolinium] tris(oxalato)chromate(III). Russ Chem Bull 57(12):2495–2505CrossRefGoogle Scholar
  32. 32.
    Sanina NA, Aldoshin SM, Shilov GV, Kurganova EV, Yurieva EA, Voloshin NA, Minkin VI, Nadtochenko VA, Morgunov RB (2008) Synthesis and photochemical and magnetic properties of Cr, Mn, Fe, and Co complexes based on the 1-{(1′,3′,3′-trimethylspiro[2H-1-benzopyran-2,2′-indolin]-8-yl)methyl}pyridinium cation. Russ Chem Bull 57(7):1451–1460CrossRefGoogle Scholar
  33. 33.
    Bénard S, Rivière E, Yu P, Nakatani K, Delouis JF (2001) A photochromic molecule-based magnet. Chem Mater 13(1):159–162CrossRefGoogle Scholar
  34. 34.
    Aldoshin SM, Sanina NA, Minkin VI, Voloshin NA, Ikorskii VN, Ovcharenko VI, Smirnov VA, Nagaeva NK (2007) Molecular photochromic ferromagnetic based on the layered polymeric tris-oxalate of Cr(III), Mn(II) and 1-[(1′,3′,3′-trimethyl-6-nitrospiro[2H-1-benzopyran-2,2′-indoline]-8-yl)methyl]pyridinium. J Mol Struct 826:69–74CrossRefGoogle Scholar
  35. 35.
    Aldoshin SM, Sanina NA, Nadtochenko VA, Yur’eva EA, Minkin VI, Voloshin NA, Ikorskii VN, Ovcharenko VI (2007) Specific spectral properties of a photochromic ferromagnetic (C25H23N3O3Cl)CrMn(C2O4)3 · H2O. Russ Chem Bull 56:1095–1102CrossRefGoogle Scholar
  36. 36.
    Morgunov RB, Mushenok FB, Aldoshin SM, Sanina NA, Yur’eva EA, Shilov GV, Tkachev VV (2009) Thermally-induced paramagnetism of spiropyrane iodides. New J Chem 33(7):1–6Google Scholar
  37. 37.
    Aldoshin SM, Sanina NA, Mushenok FB, Kirman MV, Dmitriev AI, Morgunov RB (2009) Ordered nanowires of photochromic compounds based on spiropyrane and transition metal complexes. Nanotechnol Russia 4(11/12):828–833CrossRefGoogle Scholar
  38. 38.
    Atwood JL, Steed JW (2008) Organic nanostructures. Wiley-VCH Verlag GmbhGoogle Scholar
  39. 39.
    Zhu M, Zhu L, Han JJ, Wuwei W, Hurst JK, Li ADQ (2006) Spiropyran-based photochromic polymer nanoparticles with optically switchable luminescence. J Am Chem Soc 128:4303–4309CrossRefGoogle Scholar
  40. 40.
    Ovanesyan NS, Makhaev VD, Aldoshin SM, Gredin P, Boubekeur K, Train C, Gruselle M (2005) Structure, magnetism and optical properties of achiral and chiral two-dimensional oxalate-bridged anionic networks with symmetric and asymmetric ammonium cations. Dalton Trans 18:3101–3107CrossRefGoogle Scholar
  41. 41.
    Metivier R, Bare S, Meallet-Renault R, Yu P, Pansu RB, Nakatani K (2009) Fluorescence photoswitching in polymer matrix: mutual influence between photochromic and fluorescent molecules by energy transfer processes. J Phys Chem C 113:11916–11926CrossRefGoogle Scholar
  42. 42.
    Morgunov RB, Mushenok FB, Aldoshin SM, Yur’eva EA, Shilov GV (2009) Magnetic properties of single crystals based on photochromic molecules of spiropyrans and chromium oxalates. Phys Solid State 51(8):1663–1670CrossRefGoogle Scholar
  43. 43.
    Morgunov RB, Mushenok FB, Aldoshin SM, Sanina NA (2009) Photostimulated electron transfer and its action on paramagnetism of Sp3Cr(C2O4)3 single crystals. JETP Lett 109(4):667–675CrossRefGoogle Scholar
  44. 44.
    Sanina NA, Grachev VP, Dmitriev AI, Morgunov RB, Koplak OV, Yur’eva EA, Anokhin DV, Ivanov DA, Aldoshin SM (2013) Synthesis and properties of polyvinylpyrrolidone films containing the photomagnetic chromium (tris)oxalate complex. Russ Chem Bull 62(2):554–559CrossRefGoogle Scholar
  45. 45.
    Sanina NA (2014) Synthesis and properties of multifunctional polymer composites and ordered arrays of nanostructures with photochromic 3d metal complexes. In: Book of abstracts of 16th annual conference YUCOMAT 2014, Herceg Novi, Montenegro, 1–5 Sept 2014, p 32Google Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  1. 1.Institute of Problems of Chemical PhysicsChernogolovkaRussian Federation

Personalised recommendations