New Trends in Spiro-compounds Photochromic Metals Sensors: Quantitative Aspects

  • C. Coudret
  • A. V. Chernyshev
  • A. V. Metelitsa
  • J. C. Micheau


In this chapter, we highlight the quantitative aspects of metallic ion sensing by photochromic spiro-compounds dyes. In the simplest case, spiro-compound—metal complexation can be described by only two equilibria. The first one is the closed spiro to open merocyanine thermochromic equilibrium, the second one is the metallic complex formation where the open merocyanine plays the role of a ligand. We supply a compilation of the structural, spectroscopic, thermodynamic and kinetic aspects of the most quantitatively analysed metal complexing spirocompounds. Several spiro-compound-based metal sensing systems and devices are described. By examining these examples, it appears that besides increasing the dye’s complexity to improve its selectivity for a specific ion, other promising approaches to achieve detection by differential sensing and chemometric analysis are in progress.


Spiropyran Spirooxazine Metal complexation Binding constant Photo-dissociation 


  1. 1.
    Valeur B, Leray I (2000) Design principles of fluorescent molecular sensors for cation recognition. Coord Chem Rev 205:3–40CrossRefGoogle Scholar
  2. 2.
    Lodeiro C, Capelo JL, Mejuto JC, Oliveira E, Santos HM, Pedras B, Nunez C (2010) Light and colour as analytical detection tools: a journey into the periodic table using polyamines to bio-inspired systems as chemosensors. Chem Soc Rev 39:2948–2976CrossRefGoogle Scholar
  3. 3.
    Qin M, Huang Y, Li F, Song Y (2015) Photochromic sensors: a versatile approach for recognition and discrimination. J Mater Chem C 3:9265–9275CrossRefGoogle Scholar
  4. 4.
    Bren VA (2001) Fluorescent and photochromic chemosensors. Russ Chem Rev 70:1017–1036CrossRefGoogle Scholar
  5. 5.
    Ren J, Tian H (2007) Thermally stable merocyanine form of photochromic spiropyran with aluminum ion as a reversible photo-driven sensor in aqueous solution. Sensors 7:3166–3178CrossRefGoogle Scholar
  6. 6.
    Phillips J, Mueller A, Przystal F (1965) Photochromic chelating agents. J Am Chem Soc 87:4020–4020Google Scholar
  7. 7.
    Alfimov MV, Fedorova OA, Gromov SP (2003) Photoswitchable molecular receptors. J. Photochem Photobiol 158:183–198CrossRefGoogle Scholar
  8. 8.
    Bianchi A, Delgado-Pinar E, García-España E, Giorgi C, Pina F (2014) Highlights of metal ion-based photochemical switches. Coord Chem Rev 260:156–215CrossRefGoogle Scholar
  9. 9.
    Kimura K, Nakahara Y (2009) Analytical and separation chemistry by taking advantage of organic photochromism combined with macrocyclic chemistry. Anal Sci 25:9–20CrossRefGoogle Scholar
  10. 10.
    Klajn R (2014) Spiropyran-based dynamic materials. Chem Soc Rev 43:148–184CrossRefGoogle Scholar
  11. 11.
    Kume S, Nishihara H (2006) Metal-based photoswitches derived from photoisomerization. Struct Bond 123:79–112CrossRefGoogle Scholar
  12. 12.
    Minkin VI (2013) Light-controlled molecular switches based on bistable spirocyclic organic and coordination compounds. Russ Chem Rev 82:1CrossRefGoogle Scholar
  13. 13.
    Natali M, Giordani S (2012) Molecular switches as photocontrollable “smart” receptors. Chem Soc Rev 41:4010–4029CrossRefGoogle Scholar
  14. 14.
    Paramonov SV, Lokshin V, Fedorova OA (2011) Spiropyran, chromene or spirooxazine ligands: Insights into mutual relations between complexing and photochromic properties. J Photochem Photobiol C: Photochem Rev 12:209–236CrossRefGoogle Scholar
  15. 15.
    Zakharova MI, Pimienta V, Metelitsa AV, Minkin VI, Micheau JC (2009) Thermodynamic and kinetic analysis of metal ion complexation by photochromic spiropyrans. Russ Chem Bull 58:1329–1337CrossRefGoogle Scholar
  16. 16.
    Kubinyi M, Varga O, Baranyai P, Kállay M, Mizsei R, Tárkányi G, Vidóczy T (2011) Metal complexes of the merocyanine form of nitrobenzospyran: structure, optical spectra, stability. J Mol Struct 1000:77–84CrossRefGoogle Scholar
  17. 17.
    Wojtyk JC, Kazmaier P (1998) Effects of metal ion complexation on the spiropyran–merocyanine interconversion: development of a thermally stable photo-switch. Chem Commun 1703–1704Google Scholar
  18. 18.
    Görner H, Chibisov AK (1998) Complexes of spiropyran-derived merocyanines with metal ions Thermally activated and light-induced processes. J Chem Soc, Faraday Trans 94:2557–2564CrossRefGoogle Scholar
  19. 19.
    Zhou J-W, Li Y-T, Song X-Q (1995) Investigation of the chelation of a photochromic spiropyran with Cu (II). J Photochem Photobiol 87:37–42CrossRefGoogle Scholar
  20. 20.
    Shilova EA, Samat A, Pepe G (2011) Crystal structure of trichloro-(1′-isopropyl-8-methoxy-3′,3′-dimethyl-6-nitro-1′,3′-dihydrospiro[chromene-2,2′-indole])antimony(III), SbCl3(C22H24N2O4). Z Krystall 226:71–72Google Scholar
  21. 21.
    Shao N, Zhang Y, Cheung S, Yang R, Chan W, Mo T, Li K, Liu F (2005) Copper ion-selective fluorescent sensor based on the inner filter effect using a spiropyran derivative. Anal Chem 77:7294–7303CrossRefGoogle Scholar
  22. 22.
    Shao N, Jin JY, Wang H, Zhang Y, Yang RH, Chan WH (2008) Tunable photochromism of spirobenzopyran via selective metal ion coordination: an efficient visual and ratioing fluorescent probe for divalent copper ion. Anal Chem 80:3466–3475CrossRefGoogle Scholar
  23. 23.
    Shao N, Wang H, Gao X, Yang R, Chan W (2010) Spiropyran-based fluorescent anion probe and its application for urinary pyrophosphate detection. Anal Chem 82:4628–4636CrossRefGoogle Scholar
  24. 24.
    Zhu J-F, Yuan H, Chan W-H, Lee AWM (2010) A FRET fluorescent chemosensor SPAQ for Zn2+ based on a dyad bearing spiropyran and 8-aminoquinoline unit. Tetrahedron Lett 51:3550–3554CrossRefGoogle Scholar
  25. 25.
    Zhu J-F, Yuan H, Chan W-H, Lee AWM (2010) A colorimetric and fluorescent turn-on chemosensor operative in aqueous media for Zn2+ based on a multifunctionalized spirobenzopyran derivative. Org Biomol Chem 8:3957–3964CrossRefGoogle Scholar
  26. 26.
    Zakharova MI, Coudret C, Pimienta V, Micheau JC, Delbaere S, Vermeersch G, Metelitsa AV, Voloshin N, Minkin VI (2010) Quantitative investigations of cation complexation of photochromic 8-benzothiazole-substituted benzopyran: towards metal-ion sensors. Photochem Photobiol Sci 9:199–207CrossRefGoogle Scholar
  27. 27.
    Chernyshev AV, Voloshin NA, Raskita IM, Metelitsa AV, Minkin VI (2006) Photo- and ionochromism of 5′-(4,5-diphenyl-1,3-oxazol-2-yl) substituted spiro[indoline-naphthopyrans]. J Photochem Photobiol 184:289–297CrossRefGoogle Scholar
  28. 28.
    Chernyshev AV, Voloshin NA, Metelitsa AV, Tkachev VV, Aldoshin SM, Solov’eva E, Rostovtseva IA, Minkin VI (2013) Metal complexes of new photochromic chelator: Structure, stability and photodissociation. J Photochem Photobiol 265:1–9Google Scholar
  29. 29.
    Rostovtseva IA, Chernyshev AV, Tkachev VV, Aldoshin SM, Voloshin NA, Metelitsa AV, Makarova NI, Minkin VI (2015) Spiropyrans and spirooxazines. 11. Complexation of photochromic 5′-(1,3-benzothiazole-2-yl)-substituted 1′,3′ dihydrospiro[benzo[f]chromene-3,2′indole] with metal ions. Russ Chem Bull 64:677–678CrossRefGoogle Scholar
  30. 30.
    Winkler JD, Bowen CM, Michelet V (1998) Photodynamic fluorescent metal ion sensors with parts per billion sensitivity. J Am Chem Soc 120:3237–3242CrossRefGoogle Scholar
  31. 31.
    Collins GE, Ewing KJ, Bowen CM, Winkler JD (1999) Photoinduced switching of metal complexation by quinolinospiropyranindolines in polar solvents. Chem Commun 321–322Google Scholar
  32. 32.
    Evans L, Collins GE, Shaffer RE, Michelet V, Winkler JD (1999) Selective metals determination with a photoreversible spirobenzopyran. Anal Chem 71:5322–5327CrossRefGoogle Scholar
  33. 33.
    Chernyshev AV, Metelitsa AV, Gaeva EB, Voloshin NA, Borodkin GS, Minkin VI (2007) Photo- and thermochromic cation sensitive spiro[indoline-pyridobenzopyrans]. J Phys Org Chem 20:908–916CrossRefGoogle Scholar
  34. 34.
    Guo Z-Q, Chen W-Q, Duan X-M (2010) Highly selective visual detection of Cu(II) utilizing intramolecular hydrogen bond-stabilized merocyanine in aqueous buffer solution. Org Lett 12:2202–2205CrossRefGoogle Scholar
  35. 35.
    Kumar S, Chau C, Chau G, McCurdy A (2008) Synthesis and metal complexation properties of bisbenzospiropyran chelators in water. Tetrahedron 64:7097–7105CrossRefGoogle Scholar
  36. 36.
    McCurdy A, Kawaoka AM, Thai H, Yoon SC (2001) Synthesis and characterization of a novel calcium-selective chelator. Tetrahedron Lett 42:7763–7766CrossRefGoogle Scholar
  37. 37.
    Kumar S, Hernandez D, Hoa B, Lee Y, Yang JS, McCurdy A (2008) Synthesis, photochromic properties, and light-controlled metal complexation of a naphthopyran derivative. Org Lett 10:3761–3764CrossRefGoogle Scholar
  38. 38.
    Stauffer MT, Weber SG (1999) Optical control of divalent metal ion binding to a photochromic catechol: photoreversal of tightly bound Zn2+. Anal Chem 71:1146–1151CrossRefGoogle Scholar
  39. 39.
    Natali M, Aakeroy C, Desper J, Giordani S (2010) The role of metal ions and counterions in the switching behavior of a carboxylic acid functionalized spiropyran. Dalton Trans 39:8269–8277CrossRefGoogle Scholar
  40. 40.
    Perry A, Green SJ, Horsell DW, Hornett SM, Wood ME (2015) A pyrene-appended spiropyran for selective photo-switchable binding of Zn(II): UV–visible and fluorescence spectroscopy studies of binding and non-covalent attachment to graphene, graphene oxide and carbon nanotubes. Tetrahedron 71:6776–6783CrossRefGoogle Scholar
  41. 41.
    Filley J, Ibrahim MA, Nimlos MR, Watt AS, Blake DM (1998) Magnesium and calcium chelation by a bis-spiropyran. J Photochem Photobiol 117:193–198CrossRefGoogle Scholar
  42. 42.
    Machitani K, Nakamura M, Sakamoto H, Ohata N, Masuda H, Kimura K (2008) Structural characterization for metal-ion complexation and isomerization of crowned bis(spirobenzopyran)s. J Photochem Photobiol 200:96–100CrossRefGoogle Scholar
  43. 43.
    Nakamura M, Fujioka T, Sakamoto H, Kimura K (2002) High stability constants for multivalent metal ion complexes of crown ether derivatives incorporating two spirobenzopyran moieties. New J Chem 26:554–559CrossRefGoogle Scholar
  44. 44.
    Yagi S, Nakamura S, Watanabe D, Nakazumi H (2009) Colorimetric sensing of metal ions by bis(spiropyran) podands: towards naked-eye detection of alkaline earth metal ions. Dyes Pig 80:98–105CrossRefGoogle Scholar
  45. 45.
    Miler-Srenger E, Guglielmetti R (1987) Crystal and molecular structure of CoCl2(L)(1/2 acetone) where L is=[8-methoxy-3-methyl-6-nitro-2H-1-benzopyran-2-spiro-2′-(3-methyl-benzo-thiazoline)]. J Chem Soc Perkin Trans 2:1413–1418CrossRefGoogle Scholar
  46. 46.
    Artemova NK, Smirnov VA, Rogachev BG, Shilov GV, Aldoshin SM (2006) Photo-and thermo-chromic properties of 1′,3′,3′-trimethyl-6-nitro-8-pyridiniomethyl spiro [2H-[1] benzo-pyran-2,2′-indoline] chloride in the crystalline state. Russ Chem Bull 55:1605–1611CrossRefGoogle Scholar
  47. 47.
    Guo X, Zhou Y, Zhang D, Yin B, Liu Z, Liu C, Lu Z, Huang Y, Zhu D (2004) 7-trifluoro-methylquinoline-functionalized luminescent photochromic spiropyran with the stable merocyanine species both in solution and in the solid state. J Org Chem 69:8924–8931CrossRefGoogle Scholar
  48. 48.
    Hartley FR (1980) Solution equilibria. Ellis Horwood Limited, ChichesterGoogle Scholar
  49. 49.
    Goswami S, Das AK, Maity AK, Manna A, Aich K, Maity S, Saha P, Mandal TK (2014) Visual and near IR (NIR) fluorescence detection of Cr3+ in aqueous media via spirobenzopyran ring opening with application in logic gate and bio-imaging. Dalton Trans 43:231–239CrossRefGoogle Scholar
  50. 50.
    Roxburgh CJ, Sammes PG (2006) Synthesis of some new substituted photochromic N, N′-bis (spiro [1-benzopyran-2,2′-indolyl]) diazacrown systems with substituent control over ion chelation. Eur J Org Chem 2006:1050–1056CrossRefGoogle Scholar
  51. 51.
    Roxburgh CJ, Sammes PG (1995) Substituent tuning of photoreversible lithium chelating agents. Dyes Pig 28:317–325CrossRefGoogle Scholar
  52. 52.
    Voloshin NA, Chernyshev AV, Metelitsa AV, Gaeva EB, Minkin VI (2011) Spiropyrans and spirooxazines 8. 5′-(1,3-benzothiazol-2-yl)-substituted spiro[indoline-2,3′-naphthopyrans]: synthesis and spectral and photochromic properties. Russ Chem Bull 60:1921–1926CrossRefGoogle Scholar
  53. 53.
    Uznanski P, Amiens C, Bardaji M, Donnadieu B, Coppel Y, Chaudret B, Laguna A (2001) Oxidation of photochromic spirooxazines by coinage metal cations. Part II. Oxidation by gold(III) compounds and synthesis of gold colloids. New J Chem 25:1495–1499CrossRefGoogle Scholar
  54. 54.
    Uznanski P, Amiens C, Donnadieu B, Coppel Y, Chaudret B (2001) Oxidation of photochromic spirooxazines by coinage metal cations. Part I. Reaction with AgNO3: formation and characterisation of silver particles. New J Chem 25:1486–1494CrossRefGoogle Scholar
  55. 55.
    Fedorova OA, Koshkin AV, Gromov SP, Strokach YP, Valova TM, Alfimov MV, Feofanov AV, Alaverdian IS, Lokshin VA, Samat A (2005) Transformation of 6′-amino-substituted spiro-naphthoxazines induced by Pb(II) and Eu(III) cations. J Phys Org Chem 18:504–512CrossRefGoogle Scholar
  56. 56.
    Natali M, Giordani S (2012) Interaction studies between photochromic spiropyrans and transition metal cations: the curious case of copper. Org Biomol Chem 10:1162–1171CrossRefGoogle Scholar
  57. 57.
    Collins GE, Choi L-S, Ewing KJ, Michelet V, Bowen CM, Winkler JD (1999) Photoinduced switching of metal complexation by quinolinospiropyranindolines in polar solvents. Chem Commun 321–322Google Scholar
  58. 58.
    Pimienta V, Lavabre D, Levy G, Micheau JC, Laplante JP (1995) Bistable photochemical reactions. J Mol Liq 63:121–173CrossRefGoogle Scholar
  59. 59.
    Han S, Chen Y (2011) Mercury ion induced activation of the C–O bond in a photo-responsive spiropyran. Dyes Pig 88:235–239CrossRefGoogle Scholar
  60. 60.
    Natali M, Soldi L, Giordani S (2010) A photoswitchable Zn (II) selective spiropyran-based sensor. Tetrahedron 66:7612–7617CrossRefGoogle Scholar
  61. 61.
    Guo X, Zhang D, Wang T, Zhu D (2003) Reversible regulation of pyrene excimer emission by light and metal ions in the presence of photochromic spiropyran: toward creation of a new molecular logic circuit. Chem Commun 914–915Google Scholar
  62. 62.
    Wu H, Zhang D, Su L, Ohkubo K, Zhang C, Yin S, Mao L, Shuai Z, Fukuzumi S, Zhu D (2007) Intramolecular electron transfer within the substituted tetrathiafulvalene-quinone dyads: facilitated by metal ion and photomodulation in the presence of spiropyran. J Am Chem Soc 129:6839–6846CrossRefGoogle Scholar
  63. 63.
    Suzuki T, Kitsukawa T, Hirata Y, Tanaka S, Iwasaki N (2014) Swelling-shrinking behavior of hydrated noncross-linked copolymer films in response to photoreversible isomerizaton and metal complexation of spiropyran units of the copolymers. Polym Adv Tech 25:123–129CrossRefGoogle Scholar
  64. 64.
    Scarmagnani S, Walsh Z, Slater C, Alhashimy N, Paull B, Macka M, Diamond D (2008) Polystyrene bead-based system for optical sensing using spiropyran photoswitches. J Mater Chem 18:5063–5071CrossRefGoogle Scholar
  65. 65.
    Fries K, Samanta S, Orski S, Locklin J (2008) Reversible colorimetric ion sensors based on surface initiated polymerization of photochromic polymers. Chem Commun 6288–6290Google Scholar
  66. 66.
    Fries KH, Driskell JD, Samanta S, Locklin J (2010) Spectroscopic analysis of metal ion binding in spiropyran containing copolymer thin films. Anal Chem 82:3306–3314CrossRefGoogle Scholar
  67. 67.
    Fries KH, Driskell JD, Sheppard GR, Locklin J (2011) Fabrication of spiropyran-containing thin film sensors used for the simultaneous identification of multiple metal ions. Langmuir 27:12253–12260CrossRefGoogle Scholar
  68. 68.
    Fries KH, Sheppard GR, Bilbrey JA, Locklin J (2014) Tuning chelating groups and comonomers in spiropyran-containing copolymer thin films for color-specific metal ion binding. Polym Chem 5:2094–2102CrossRefGoogle Scholar
  69. 69.
    Johns VK, Patel PK, Hassett S, Calvo-Marzal P, Qin Y, Chumbimuni-Torres KY (2014) Visible light activated ion sensing using a photoacid polymer for calcium detection. Anal Chem 86:6184–6187CrossRefGoogle Scholar
  70. 70.
    Benito-Lopez F, Scarmagnani S, Walsh Z, Paull B, Macka M, Diamond D (2009) Spiropyran modified micro-fluidic chip channels as photonically controlled self-indicating system for metal ion accumulation and release. Sens Act B: Chem 140:295–303CrossRefGoogle Scholar
  71. 71.
    Huang Y, Li F, Ye C, Qin M, Ran W, Song Y (2015) A photochromic sensor microchip for high-performance multiplex metal ions detection. Sci Rep 5:9724–9731CrossRefGoogle Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  • C. Coudret
    • 1
  • A. V. Chernyshev
    • 2
  • A. V. Metelitsa
    • 2
  • J. C. Micheau
    • 1
  1. 1.IMRCP, UMR 5623Université P. SabatierToulouse CedexFrance
  2. 2.Institute of Physical Organic ChemistryRostov on DonRussia

Personalised recommendations