Advertisement

Biomechanics of Adolescent Idiopathic Scoliosis

  • Wafa SkalliEmail author
  • Claudio Vergari
Chapter

Abstract

Adolescent idiopathic scoliosis (AIS) is the result of complex multifactorial phenomena, including biomechanical issues. The spine, as a central part of a musculoskeletal construct from the head to the pelvis, has both to withstand loads to maintain a stable erect posture and to allow multidirectional mobility and stability with controlled intervertebral motion. Growing spine in adolescent idiopathic scoliosis (AIS) is characterized by three-dimensional global and local changes. A biomechanical cascade, the mechanism of which is not yet fully understood, impacts both tissue geometry and their biomechanical characteristics. This chapter on clinical biomechanics of AIS provides recent advances on 3D geometric and mechanical modeling of the spine and their clinical implications.

3D reconstruction from low-dose biplanar X-rays is a recent technique that is now routinely used in many hospitals. It provides visualization of the scoliotic spine and trunk, particularly from the top, and a large set of quantitative clinical 3D parameters that come in complement to the Cobb angle. The use of mathematical data analysis techniques allowed early detection of progressive spines. Quantitative shape assessment also allowed objective analysis of brace or surgical treatment effects on each individual patient. Such novel 3D quantitative analysis should drastically enhance our understanding of the mechanisms underlying AIS development and correction.

Moving from geometric to biomechanical models requires deep understanding and realistic modeling of mechanical characteristics of soft tissues, particularly the intervertebral discs. In vitro analysis gives an insight in the changes that occur in the structure of the scoliotic disc, and recent techniques based on MRI or ultrasound elastography appear promising for in vivo assessment.

Based on 3D reconstruction from biplanar X-rays, subject-specific biomechanical models are now proposed for the investigation of AIS spine and trunk, with a tremendous potential both for a better understanding of the basic biomechanical behavior and for computer-assisted planning of a personalized treatment. However it has to be kept in mind that models do simplify a highly complex structure, and therefore a thorough validation process has to be conducted before considering such models as predictive for a clinical use. Particularly, evaluation has to be performed on the whole set of clinical parameters of clinical interest. First validation frameworks progressively appear, and first in vivo validated models, although still mainly in research, open wide perspectives and should become mature in a near future, bringing an invaluable tool to the clinician for diagnosis and assessment of optimal treatment strategy.

Such advances in clinical biomechanics of the AIS rely on efficient dialogue between clinicians and engineers, which is the key for future translation toward AIS management based on biomechanical principles.

Keywords

Biomechanics Scoliosis 3D modeling Finite element Numerical simulation 

Notes

Acknowledgments

The authors gratefully thank all the spine team of the Institut de Biomécanique Humaine Georges Charpak and the clinical partners who participated to research on scoliosis.

Recent research was supported by the ParisTech Foundation within the BiomecAM chair program on subject-specific musculoskeletal modeling, with the participation of Cotrel Foundation, Proteor Company, Société Générale, and Covea.

References

  1. 1.
    Vital JM, Senegas J. Anatomical bases of the study of the constraints to which the cervical spine is subject in the sagittal plane A study of the center of gravity of the head. Surg Radiol Anat. 1986;8:169–73.CrossRefPubMedGoogle Scholar
  2. 2.
    Dubousset J. Three-dimensional analysis of the scoliotic deformity, in: the pediatric spine: principles and practice. New York, NY: Raven Press; 1994.Google Scholar
  3. 3.
    Perdriolle R, Vidal J. Morphology of scoliosis: three-dimensional evolution. Orthopedics. 1987;10:909–15.PubMedGoogle Scholar
  4. 4.
    Meir AR, Fairbank JCT, Jones DA, McNally DS, Urban JPG. High pressures and asymmetrical stresses in the scoliotic disc in the absence of muscle loading. Scoliosis. 2007;2:4.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Brenner DJ, Hall EJ. Computed tomography. an increasing source of radiation exposure. N Engl J Med. 2007;357:2277–84.CrossRefPubMedGoogle Scholar
  6. 6.
    Skalli W, Lavaste F, Descrimes JL. Quantification of three-dimensional vertebral rotations in scoliosis: what are the true values? Spine. 1995;20(5):546–53.CrossRefPubMedGoogle Scholar
  7. 7.
    Aubert B, Vergari C, Ilharreborde B, Courvoisier A, Skalli W. 3D reconstruction of rib cage geometry from biplanar radiographs using a statistical parametric model approach. Comput Methods Biomech Biomed Eng Imag Vis. 2016;4:281–95.Google Scholar
  8. 8.
    Chaibi Y, Cresson T, Aubert B, Hausselle J, Neyret P, Hauger O, de Guise JA, Skalli W. Fast 3D reconstruction of the lower limb using a parametric model and statistical inferences and clinical measurements calculation from biplanar X-rays. Comput Methods Biomech Biomed Engin. 2012;15:457–66.CrossRefPubMedGoogle Scholar
  9. 9.
    Dubousset J, Charpak G, Dorion I, Skalli W, Lavaste F, Deguise J, Kalifa G, Ferey S. A new 2D and 3D imaging approach to musculoskeletal physiology and pathology with low-dose radiation and the standing position: the EOS system. Bull Acad Natl Med. 2005;189:287–300.PubMedGoogle Scholar
  10. 10.
    Humbert L, De Guise JA, Aubert B, Godbout B, Skalli W. 3D reconstruction of the spine from biplanar X-rays using parametric models based on transversal and longitudinal inferences. Med Eng Phys. 2009;31:681–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Carreau JH, Bastrom T, Petcharaporn M, Schulte C, Marks M, Illés T, Somoskeöy S, Newton PO. Computer-generated, three-dimensional spine model from biplanar radiographs: a validity study in idiopathic scoliosis curves greater than 50 degrees. Spine Deform. 2014;2:81–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Ferrero E, Lafage R, Vira S, Rohan P-Y, Oren J, Delsole E, Guigui P, Schwab F, Lafage V, Skalli W. Three-dimensional reconstruction using stereoradiography for evaluating adult spinal deformity: a reproducibility study. Eur Spine J. 2016;26:2112–20.CrossRefPubMedGoogle Scholar
  13. 13.
    Gille O, Champain N, Benchikh-El-Fegoun A, Vital J-M, Skalli W. Reliability of 3D reconstruction of the spine of mild scoliotic patients. Spine. 2007;32(5):568–73.CrossRefPubMedGoogle Scholar
  14. 14.
    Glaser DA, Doan J, Newton PO. Comparison of 3-dimensional spinal reconstruction accuracy: biplanar radiographs with EOS versus computed tomography. Spine. 2012;37(16):1391–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Ilharreborde B, Steffen JS, Nectoux E, Vital JM, Mazda K, Skalli W, Obeid I. Angle measurement reproducibility using EOS three-dimensional reconstructions in adolescent idiopathic scoliosis treated by posterior instrumentation. Spine. 2011;36:E1306–13.CrossRefPubMedGoogle Scholar
  16. 16.
    Illés T, Tunyogi-Csapó M, Somoskeöy S. Breakthrough in three-dimensional scoliosis diagnosis: significance of horizontal plane view and vertebra vectors. Eur Spine J. 2011;20:135–43.  https://doi.org/10.1007/s00586-010-1566-8.CrossRefPubMedGoogle Scholar
  17. 17.
    Steib JP, Dumas R, Mitton D, Skalli W. Surgical correction of scoliosis by in situ contouring: a detorsion analysis. Spine. 2004;29:193–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Courvoisier A, Drevelle X, Dubousset J, Skalli W. Transverse plane 3D analysis of mild scoliosis. Eur Spine J. 2013;22:2427–32.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Skalli W, Vergari C, Ebermeyer E, Courtois I, Drevelle X, Abelin-Genevois K, Kohler R, Dubousset J. Early detection of progressive adolescent idiopathic scoliosis: a severity index. Spine (Phila Pa 1976). 2017;42(11):823–30.CrossRefGoogle Scholar
  20. 20.
    Courvoisier A, Drevelle X, Vialle R, Dubousset J, Skalli W. 3D analysis of brace treatment in idiopathic scoliosis. Eur Spine J. 2013;22:PMC3886497.Google Scholar
  21. 21.
    Vergari C, Mansfield J, Meakin JR, Winlove PC. Lamellar and fibre bundle mechanics of the annulus fibrosus in bovine intervertebral disc. Acta Biomater. 2016;37:14–20.CrossRefPubMedGoogle Scholar
  22. 22.
    Donzelli S, Zaina F, Lusini M, Minnella S, Respizzi S, Balzarini L, Poma S, Negrini S. The three dimensional analysis of the Sforzesco brace correction. Scoliosis Spinal Disord. 2016;11:34.  https://doi.org/10.1186/s13013-016-0092-9. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ilharreborde B, Sebag G, Skalli W, Mazda K. Adolescent idiopathic scoliosis treated with posteromedial translation: radiologic evaluation with a 3D low-dose system. Eur Spine J. 2013;22:2382–91.  https://doi.org/10.1007/s00586-013-2776-7.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Dubousset J, Wicart P, Pomero V, Barois A, Estournet B. Spinal penetration index: new three-dimensional quantified reference for lordoscoliosis and other spinal deformities. J Orthop Sci. 2003;8:41–9.  https://doi.org/10.1007/s007760300007.CrossRefPubMedGoogle Scholar
  25. 25.
    Pietton R, Bouloussa H, Vergari C, Skalli W, Vialle R. Rib cage measurement reproducibility using biplanar stereoradiographic 3D reconstructions in adolescent idiopathic scoliosis. J Pediatr Orthop. 2017.  https://doi.org/10.1097/BPO.0000000000001095. Epub available.
  26. 26.
    Amabile C, Pillet H, Lafage V, Barrey C, Vital J-M, Skalli W. A new quasi-invariant parameter characterizing the postural alignment of young asymptomatic adults. Eur Spine J. 2016;25:3666–74.  https://doi.org/10.1007/s00586-016-4552-y.CrossRefPubMedGoogle Scholar
  27. 27.
    Steffen J-S, Obeid I, Aurouer N, Hauger O, Vital J-M, Dubousset J, Skalli W. 3D postural balance with regard to gravity line: an evaluation in the transversal plane on 93 patients and 23 asymptomatic volunteers. Eur Spine J. 2010;19:760–7.  https://doi.org/10.1007/s00586-009-1249-5.CrossRefPubMedGoogle Scholar
  28. 28.
    Sandoz B, Laporte S, Skalli W, Mitton D. Subject-specific body segment parameters’ estimation using biplanar X-rays: a feasibility study. Comput Methods Biomech Biomed Engin. 2010;13:649–54.  https://doi.org/10.1080/10255841003717608.CrossRefPubMedGoogle Scholar
  29. 29.
    Nérot A, Choisne J, Amabile C, Travert C, Pillet H, Wang X, Skalli W. A 3D reconstruction method of the body envelope from biplanar X-rays: evaluation of its accuracy and reliability. J Biomech. 2015;48:4322–6.  https://doi.org/10.1016/j.jbiomech.2015.10.044.CrossRefPubMedGoogle Scholar
  30. 30.
    Amabile C, Choisne J, Nérot A, Pillet H, Skalli W. Determination of a new uniform thorax density representative of the living population from 3D external body shape modeling. J Biomech. 2016;49:1162–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Faro FD, Marks MC, Pawelek J, Newton PO. Evaluation of a functional position for lateral radiograph acquisition in adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2004;29:2284–9. http://www.ncbi.nlm.nih.gov/pubmed/15480143.CrossRefGoogle Scholar
  32. 32.
    Guo X, Chau WW, Chan YL, Cheng JC, Burwell RG, Dangerfield PH. Relative anterior spinal overgrowth in adolescent idiopathic scoliosis—result of disproportionate endochondral-membranous bone growth? Eur Spine J. 2005;14(9):862–73.CrossRefPubMedGoogle Scholar
  33. 33.
    Schlösser TPC, van Stralen M, Chu WCW, Lam T-P, Ng BKW, Vincken KL, Cheng JCY, Castelein RM. Anterior overgrowth in primary curves, compensatory curves and junctional segments in adolescent idiopathic scoliosis. PLoS One. 2016;11:1–11.  https://doi.org/10.1371/journal.pone.0160267. CrossRefGoogle Scholar
  34. 34.
    Perdriolle R, Becchetti S, Vidal J, Lopez P. Mechanical process and growth cartilages; Essential factors in the progression of scoliosis. Spine (Phila. Pa. 1976). 1993;18:343–9. http://journals.lww.com/spinejournal/Fulltext/1993/03000/Mechanical_Process_and_Growth_Cartilages_.7.aspx.CrossRefGoogle Scholar
  35. 35.
    Parent S, Labelle H, Skalli W, de Guise J. Vertebral wedging characteristic changes in scoliotic spines. Spine. 2004;29(20):e455–62.CrossRefPubMedGoogle Scholar
  36. 36.
    Schlösser TPC, van Stralen M, Brink RC, Chu WCW, Lam T-P, Vincken KL, Castelein RM, Cheng JCY. Three-dimensional characterization of torsion and asymmetry of the intervertebral discs versus vertebral bodies in adolescent idiopathic scoliosis. Spine (Phila. Pa. 1976). 2014;39:E1159–66. http://journals.lww.com/spinejournal/Fulltext/2014/09010/Three_Dimensional_Characterization_of_Torsion_and.16.aspx.CrossRefGoogle Scholar
  37. 37.
    Parent S, Labelle H, Skalli W, Latimer B, de Guise J. Morphometric analysis of anatomic scoliotic specimens. Spine (Phila. Pa. 1976). 2002;27:2305–11. http://journals.lww.com/spinejournal/Fulltext/2002/11010/Morphometric_Analysis_of_Anatomic_Scoliotic.2.aspx.CrossRefGoogle Scholar
  38. 38.
    Courtois I, Collet P, Mouilleseaux B, Alexandre C. Bone mineral density at the femur and lumbar spine in a population of young women treated for scoliosis in adolescence. Rev Rhum Engl Ed. 1999;66(12):705–10.PubMedGoogle Scholar
  39. 39.
    Cheng JC, Qin L, Cheung CS, Sher AH, Lee KM, Ng SW, Guo X. Generalized low areal and volumetric bone mineral density in adolescent idiopathic scoliosis. J Bone Miner Res. 2000;15(18):1587–95.CrossRefPubMedGoogle Scholar
  40. 40.
    Kopperdahl DL, Morgan EF, Keaveny TM. Quantitative computed tomography estimates of the mechanical properties of human vertebral trabecular bone. J Orthop Res. 2002;20:801–5.  https://doi.org/10.1016/S0736-0266(01)00185-1.CrossRefPubMedGoogle Scholar
  41. 41.
    Crock HV. An atlas of vascular anatomy of the skeleton & spinal cord. London: Martin Dunitz Ltd; 1996.Google Scholar
  42. 42.
    Cannella M, Arthur A, Allen S, Keane M, Joshi A, Vresilovic E, Marcolongo M. The role of the nucleus pulposus in neutral zone human lumbar intervertebral disc mechanics. J Biomech. 2008;41:2104–11.CrossRefPubMedGoogle Scholar
  43. 43.
    Shea M, Takeuchi TY, Wittenberg RH, White AA III, Hayes WC. A comparison of the effects of automated percutaneous diskectomy and conventional diskectomy on intradiscal pressure, disk geometry, and stiffness. J Spinal Disord. 1994;7:317–25.CrossRefPubMedGoogle Scholar
  44. 44.
    Adam C, Rouch P, Skalli W. Inter-lamellar shear resistance confers compressive stiffness in the intervertebral disc: an image-based modelling study on the bovine caudal disc. J Biomech. 2015;48:4303–8.CrossRefPubMedGoogle Scholar
  45. 45.
    Marchand F, Ahmed AM. Investigation of the laminate structure of lumbar disc anulus fibrosus. Spine. 1990;15:402–10.CrossRefPubMedGoogle Scholar
  46. 46.
    Gruber HE, Hanley EN. Observations on morphologic changes in the aging and degenerating human disc: secondary collagen alterations. BMC Musculoskelet Disord. 2002;3:9.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Yu J, Schollum ML, Wade KR, Broom ND, Urban J. ISSLS Prize Winner: a detailed examination of the elastic network leads to a new understanding of annulus fibrosus organization. Spine. 2012;37:1490–6.CrossRefGoogle Scholar
  48. 48.
    Pezowicz CA, Robertson PA, Broom ND. The structural basis of interlamellar cohesion in the intervertebral disc wall. J Anat. 2006;208:317–30.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Melrose J, Smith SM, Appleyard RC, Little CB. Aggrecan, versican and type VI collagen are components of annular translamellar crossbridges in the intervertebral disc. Eur Spine J. 2008;17:314–24.CrossRefPubMedGoogle Scholar
  50. 50.
    Schollum ML, Robertson PA, Broom ND. ISSLS Prize Winner: microstructure and mechanical disruption of the lumbar disc annulus: part I: a microscopic investigation of the translamellar bridging network. Spine. 2008;33:2702–10.CrossRefPubMedGoogle Scholar
  51. 51.
    Michalek AJ, Buckley MR, Bonassar LJ, Cohen I, Iatridis JC. Measurement of local strains in intervertebral disc anulus fibrosus tissue under dynamic shear: contributions of matrix fiber orientation and elastin content. J Biomech. 2009;42:2279–85.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Bruehlmann SB, Matyas JR, Duncan NA. ISSLS prize winner: collagen fibril sliding governs cell mechanics in the anulus fibrosus: an in situ confocal microscopy study of bovine discs. Spine. 2004;29:2612–20.CrossRefPubMedGoogle Scholar
  53. 53.
    Vergari C, Dubois G, Vialle R, Gennisson J-L, Tanter M, Dubousset J, Rouch P, Skalli W. Lumbar annulus fibrosus biomechanical characterization in healthy children by ultrasound shear wave elastography. Eur Radiol. 2016;26:1213–7.CrossRefPubMedGoogle Scholar
  54. 54.
    Bushell GR, Ghosh P, Taylor TKF, Sutherland JM. The collagen of the intervertebral disc in adolescent idiopathic scoliosis. J Bone Joint Surg. 1979;61-B:501–8.CrossRefGoogle Scholar
  55. 55.
    Antoniou J, Arlet V, Goswami T, Aebi M, Alini M. Elevated synthetic activity in the convex side of scoliotic intervertebral discs and endplates compared with normal tissues. Spine. 2001;26(10):E198–206.CrossRefPubMedGoogle Scholar
  56. 56.
    Roberts S, Menage J, Eisenstein SM. The cartilage end-plate and intervertebral disc in scoliosis: calcification and other sequelae. J Orthop Res. 1993;11:747–57.CrossRefPubMedGoogle Scholar
  57. 57.
    Yu J, Fairbank JC, Roberts S, Urban JP. The elastic fiber network of the anulus fibrosus of the normal and scoliotic human intervertebral disc. Spine. 2005;30:1815–20.CrossRefPubMedGoogle Scholar
  58. 58.
    Chen B, Fellenberg J, Wang H, Carstens C, Richter W. Occurrence and regional distribution of apoptosis in scoliotic discs. Spine. 2005;30(5):519–24.CrossRefPubMedGoogle Scholar
  59. 59.
    Urban MR, Fairbank JCT, Etherington PJ, Loh Lawrence F, Winlove CP, Urban JPG. Electrochemical measurement of transport into scoliotic intervertebral discs invivo using nitrous oxide as a tracer. Spine. 2001;26:984–90.CrossRefPubMedGoogle Scholar
  60. 60.
    Stokes IA, Spence H, Aronsson DD, Kilmer N. Mechanical modulation of vertebral body growth. Implications for scoliosis progression. Spine. 1996;21:1162–7.CrossRefPubMedGoogle Scholar
  61. 61.
    Benneker L, Heini P, Anderson S, Alini M, Ito K. Correlation of radiographic and MRI parameters to morphological and biochemical assessment of intervertebral disc degeneration. Eur Spine J. 2005;14:27–35.CrossRefPubMedGoogle Scholar
  62. 62.
    Ludescher B, Effelsberg J, Martirosian P, Steidle G, Markert B, Claussen C, Schick F. T2- and diffusion-maps reveal diurnal changes of intervertebral disc composition: An in vivo MRI study at 1.5 Tesla. J Magn Reson Imaging. 2008;28:252–7.CrossRefPubMedGoogle Scholar
  63. 63.
    Osti OL, Fraser RD. MRI and discography of annular tears and intervertebral disc degeneration. A prospective clinical comparison. J Bone Joint Surg Br. 1992;74-B:431 LP–435.CrossRefGoogle Scholar
  64. 64.
    Violas P, Estivalezes E, Briot J, Sales de Gauzy J, Swider P. Objective quantification of intervertebral disc volume properties using MRI in idiopathic scoliosis surgery. Magn Reson Imaging. 2007;25:386–91.CrossRefPubMedGoogle Scholar
  65. 65.
    Gervais J, Périé D, Parent S, Labelle H, Aubin C-E. MRI signal distribution within the intervertebral disc as a biomarker of adolescent idiopathic scoliosis and spondylolisthesis. BMC Musculoskelet Disord. 2012;13:1–10.CrossRefGoogle Scholar
  66. 66.
    Hirsch C, Ilharreborde B, Mazda K. EOS suspension test for the assessment of spinal flexibility in adolescent idiopathic scoliosis. Eur Spine J. 2015;24:1408–14.CrossRefPubMedGoogle Scholar
  67. 67.
    Klepps SJ, Lenke LG, Bridwell KH, Bassett GS, Whorton J. Prospective comparison of flexibility radiographs in adolescent idiopathic scoliosis. Spine. 2001;26:E74–9.CrossRefPubMedGoogle Scholar
  68. 68.
    Little JP, Adam CJ. The effect of soft tissue properties on spinal flexibility in scoliosis: biomechanical simulation of fulcrum bending. Spine. 2009;34:E76–82.CrossRefPubMedGoogle Scholar
  69. 69.
    Kakitsubata Y, Theodorou SJ, Theodorou DJ, Nabeshima K, Kakitsubata S, Tamura S. Sonographic characterization of the lumbar intervertebral disk with anatomic correlation and histopathologic findings. J Ultrasound Med. 2005;24:489–99.CrossRefPubMedGoogle Scholar
  70. 70.
    Naish C, Mitchell R, Innes J, Halliwell M, McNally D. Ultrasound imaging of the intervertebral disc. Spine. 2003;28:107–13.CrossRefPubMedGoogle Scholar
  71. 71.
    Vergari C, Courtois I, Ebermeyer E, Bouloussa H, Vialle R, Skalli W. Experimental validation of a patient-specific model of orthotic action in adolescent idiopathic scoliosis. Eur Spine J. 2016;25:3049–55.CrossRefPubMedGoogle Scholar
  72. 72.
    Prot M, Saletti D, Pattofatto S, Bousson V, Laporte S. Links between mechanical behavior of cancellous bone and its microstructural properties under dynamic loading. J Biomech. 2015;48:498–503.  https://doi.org/10.1016/j.jbiomech.2014.12.002.CrossRefPubMedGoogle Scholar
  73. 73.
    Charles YP, Lima LV, Persohn S, Rouch P, Steib JP, Skalli W. Influence of an auxiliary facet system on intervertebral discs and adjacent facet joints. Spine J. 2013;13(10):1293–300.CrossRefPubMedGoogle Scholar
  74. 74.
    Le Huec JC, Lafage V, Bonnet X, Lavaste F, Josse L, Liu M, Skalli W. Validated finite element analysis of the maverick total disc prosthesis. J Spinal Disord Tech. 2010;23(4):249–57.CrossRefPubMedGoogle Scholar
  75. 75.
    Villemure I, Aubin CE, Dansereau J, Labelle H. Biomechanical simulations of the spine deformation process in adolescent idiopathic scoliosis from different pathogenesis hypotheses. Eur Spine J. 2004;13:83–90.  https://doi.org/10.1007/s00586-003-0565-4.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Drevelle X, Lafon Y, Ebermeyer E, Courtois I, Dubousset J, Skalli W. Analysis of idiopathic scoliosis progression by using numerical simulation. Spine (Phila Pa 1976). 2010;35:E407–12. http://journals.lww.com/spinejournal/Fulltext/2010/05010/Analysis_of_Idiopathic_Scoliosis_Progression_by.21.aspx.CrossRefGoogle Scholar
  77. 77.
    Shi L, Wang D, Driscoll M, Villemure I, Chu WC, Cheng JC, Aubin C-E. Biomechanical analysis and modeling of different vertebral growth patterns in adolescent idiopathic scoliosis and healthy subjects. Scoliosis. 2011;6:11.  https://doi.org/10.1186/1748-7161-6-11.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Nie W-Z, Ye M, Liu Z-D, Wang C-T. The patient-specific brace design and biomechanical analysis of adolescent idiopathic scoliosis. J Biomech Eng. 2009;131:41007.  https://doi.org/10.1115/1.3049843.CrossRefGoogle Scholar
  79. 79.
    Desbiens-Blais F, Clin J, Parent S, Labelle H, Aubin C-E. New brace design combining CAD/CAM and biomechanical simulation for the treatment of adolescent idiopathic scoliosis. Clin Biomech. 2012;27:999–1005.  https://doi.org/10.1016/j.clinbiomech.2012.08.006.CrossRefGoogle Scholar
  80. 80.
    Rizza R, Liu X, Thometz J, Tassone C. Comparison of biomechanical behavior between a cast material torso jacket and a polyethylene based jacket. Scoliosis. 2015;10:S15.  https://doi.org/10.1186/1748-7161-10-S2-S15.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Cobetto N, Aubin CE, Parent S, Clin J, Barchi S, Turgeon I, Labelle H. Effectiveness of braces designed using computer-aided design and manufacturing (CAD/CAM) and finite element simulation compared to CAD/CAM only for the conservative treatment of adolescent idiopathic scoliosis: a prospective randomized controlled trial. Eur Spine J. 2016;25(10):3056–64.  https://doi.org/10.1007/s00586-016-4434-3.CrossRefPubMedGoogle Scholar
  82. 82.
    Vergari C, Ribes G, Aubert B, Adam C, Miladi L, Ilharreborde B, Abelin-Genevois K, Rouch P, Skalli W. Evaluation of a patient-specific finite element model to simulate conservative treatment in adolescent idiopathic scoliosis. Spine Deform. 2015;3:4–11.CrossRefPubMedGoogle Scholar
  83. 83.
    Little JP, Adam CJ. Geometric sensitivity of patient-specific finite element models of the spine to variability in user-selected anatomical landmarks. Comput Methods Biomech Biomed Engin. 2015;18(6):676–88.CrossRefPubMedGoogle Scholar
  84. 84.
    Driscoll M, Aubin C-E, Moreau A, Parent S. Biomechanical comparison of fusionless growth modulation corrective techniques in pediatric scoliosis. Med Biol Eng Comput. 2011;49:1437–45.  https://doi.org/10.1007/s11517-011-0801-8.CrossRefPubMedGoogle Scholar
  85. 85.
    Lafon Y, Steib J-P, Skalli W. Intraoperative three dimensional correction during in situ contouring surgery by using a numerical model. Spine (Phila. Pa. 1976). 2010;35:453–9.  https://doi.org/10.1097/BRS.0b013e3181b8eaca.CrossRefGoogle Scholar
  86. 86.
    Berger S, Marcello O, Schuman S, Schneider J, Studer D, Hasler C, Zheng G, Büchler P. Patient-specific spinal stiffness in AIS: a preoperative and noninvasive method. Eur Spine J. 2015;24:249–55.  https://doi.org/10.1007/s00586-014-3623-1.CrossRefPubMedGoogle Scholar
  87. 87.
    Lafon Y, Lafage V, Dubousset J, Skalli W. Intraoperative three-dimensional correction during rod rotation technique. Spine (Phila Pa 1976). 2009;34:512–9.  https://doi.org/10.1097/BRS.0b013e31819413ec. CrossRefGoogle Scholar

Copyright information

© Springer Japan KK 2018

Authors and Affiliations

  1. 1.Arts et Metiers ParisTechInstitut de Biomecanique Humaine Georges CharpakParisFrance

Personalised recommendations