Advertisement

Enabling Harmonized Human-Robot Interaction in a Public Space

  • Takayuki KandaEmail author
Chapter

Abstract

We aim to realize a future city environment in which social robots roam in public spaces and offer such useful services to visitors as information-providing and flyer-distributing, will make three types of research contributions from our project. First, we developed a sensor network that can cover a large area in a shopping mall. Second, based on the rich information from that sensor network, we developed models of pedestrian behavior to increase our understanding of their behavior. Third, these models of pedestrian behavior enable us to harmonize robots into public spaces. That is, without hindering the movement of people, robots will be able to offer useful services.

Keywords

Human-Robot Interaction Social robots Service robots Pedestrian modeling 

Notes

Acknowledgements

The authors of this chapter thank the following people who participated in this project: Satoru Satake, Drazen Brščić, Francesco Zanlungo, Masahiro Shiomi, Tetsushi Ikeda, Takahiro Miyashita, Kotaro Hayashi, Yoich Morales, Thomas Kaczmarek, Hiroyuki Kidokoro, Alessandra Maria Sabelli, Chao Shi, Yoshitaka Suehiro, Deneth Karunarathne, Yoshihiro Chigodo, Daniel Rea, Takuya Kitade, Hajime Iba, Ryo Murakami, Yusuke Kato, Keita Nakatani, and Kanako Tomita.

References

  1. 1.
    W. Burgard, et al., The interactive museum Tour-Guide robot, in National Conference on Artificial Intelligence (AAAI1998), pp. 11–18, 1998Google Scholar
  2. 2.
    R. Siegwart et al., Robox at Expo. 02: a large scale installation of personal robots. Robot. Auton. Syst. 42, 203–222 (2003)CrossRefzbMATHGoogle Scholar
  3. 3.
    M. Shiomi, T. Kanda, H. Ishiguro, N. Hagita, Interactive humanoid robots for a science museum. IEEE Intell. Syst. 22, 25–32 (2007)CrossRefGoogle Scholar
  4. 4.
    S. Thrun, et al., Minerva: a Second-Generation museum Tour-Guide robot, in IEEE International Conference on Robotics and Automation (ICRA1999), pp. 1999–2005, 1999Google Scholar
  5. 5.
    H.-M. Gross, et al., Shopbot: progress in developing an interactive mobile shopping assistant for everyday use, in IEEE International Conference on Systems, Man, and Cybernetics (SMC2008), pp. 3471–3478, 2008Google Scholar
  6. 6.
    V. Kulyukin, C. Gharpure, J. Nicholson, robocart: toward Robot-Assisted navigation of grocery stores by the visually impaired, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS2005), pp. 2845–2850, 2005Google Scholar
  7. 7.
    G. Ferri, et al., Dustcart, an autonomous robot for Door-to-Door garbage collection: from dustbot project to the experimentation in the small town of peccioli, in IEEE International Conference on Robotics and Automation (ICRA2011), pp. 655–660, 2011Google Scholar
  8. 8.
    R. Kirby, J. Forlizzi, R. Simmons, Affective social robots. Robot. Auton. Syst. 58, 322–332 (2010)CrossRefGoogle Scholar
  9. 9.
    A. Weiss, et al., A methodological variation for acceptance evaluation of human-robot interaction in public places, in IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN2008), pp. 713–718, 2008Google Scholar
  10. 10.
    T. Kanda, M. Shiomi, Z. Miyashita, H. Ishiguro, N. Hagita, A communication robot in a shopping mall. IEEE Trans. Robot. 26, 897–913 (2010)CrossRefGoogle Scholar
  11. 11.
    K. Hayashi, M. Shiomi, T. Kanda, N. Hagita, Are robots appropriate for troublesome and communicative tasks in a city environment? IEEE Trans. Auton. Ment. Dev. 4, 150–160 (2012)CrossRefGoogle Scholar
  12. 12.
    A.M. Sabelli, T. Kanda, Robovie as a mascot: a qualitative study for Long-Term presence of robots in a shopping mall. Int. J. Soc. Robot. 1–11 (2015)Google Scholar
  13. 13.
    H. Kidokoro, T. Kanda, D. Brščić, M. Shiomi, Simulation-Based behavior planning to prevent congestion of pedestrians around a robot. IEEE Trans. Robot. 31, 1419–1431 (2015)CrossRefGoogle Scholar
  14. 14.
    M. Shiomi, F. Zanlungo, K. Hayashi, T. Kanda, A framework with a pedestrian simulator for deploying robots into a real environment, in Simlation, modeling, and programming for autonomous robots (SIMPAR2012), 2012Google Scholar
  15. 15.
    S. Satake, H. Iba, T. Kanda, M. Imai, Y.M. Saiki, May I talk about other shops here?: modeling territory and invasion in front of shops, in Proceedings of the 2014 ACM/IEEE International Conference on Human-Robot Interaction (ed: ACM, 2014), pp. 487–494Google Scholar
  16. 16.
    J.B. Misyak, T. Melkonyan, H. Zeitoun, N. Chater, Unwritten Rules: Virtual Bargaining Underpins Social Interaction. Cult. Soc. Trends Cogn. Sci. 18, 512–519 (2014)CrossRefGoogle Scholar
  17. 17.
    M.J. Gelfand et al., Differences between tight and loose cultures: a 33-Nation study. Science 332, 1100–1104 (2011)CrossRefGoogle Scholar
  18. 18.
    D. Brščić, T. Kanda, T. Ikeda, T. Miyashita, Person tracking in large public spaces using 3D range sensors. IEEE Trans. Hum.-Mach. Syst. 43, 522–534 (2013)CrossRefGoogle Scholar
  19. 19.
    D.F. Glas, D. Brščić, T. Miyashita, N. Hagita, Snapcat-3d: calibrating networks of 3D range sensors for pedestrian tracking, in 2015 IEEE International Conference on Robotics and Automation (ICRA) (ed: IEEE, 2015), pp. 712–719Google Scholar
  20. 20.
    D.F. Glas, Y. Morales, T. Kanda, H. Ishiguro, N. Hagita, Simultaneous people tracking and robot localization in dynamic social spaces. Auton. Robot. 39, 43–63 (2015)CrossRefGoogle Scholar
  21. 21.
    K. Bernardin, R. Stiefelhangen, Evaluating multiple object tracking performance: the clear mot metrics, in Video Tracking in Complex Scenes for Surveillance Applications (Eurasip Journal on Image and Video Processing), vol. 2008 (Hindawi Publishing Corporation, 2008)Google Scholar
  22. 22.
    F. Zanlungo, T. Ikeda, T. Kanda, A microscopic “Social Norm” model to obtain realistic macroscopic velocity and density pedestrian distributions. PLoS ONE 7 (2012)Google Scholar
  23. 23.
    F. Zanlungo, D. Brščić, T. Kanda, Spatial-Size scaling of pedestrian groups under growing density conditions. Phys. Rev. E 91, 062810 (2015)CrossRefGoogle Scholar
  24. 24.
    F. Zanlungo, T. Kanda, A. Mesoscopic, Model for the effect of density on pedestrian group dynamics. EPL (Europhysics Letters) 111, 38007 (2015)CrossRefGoogle Scholar
  25. 25.
    F. Zanlungo, T. Ikeda, T. Kanda, Potential for the dynamics of pedestrians in a socially interacting group. Phys. Rev. E 89 (2014)Google Scholar
  26. 26.
    T. Ikeda, et al., Modeling and Prediction of Pedestrian Behavior Based on the Sub-Goal Concept Robotics: Science and Systems, 2012Google Scholar
  27. 27.
    D. Brščić, T. Kanda, Changes in usage of an indoor public space: analysis of one year of person tracking. IEEE Trans. Hum.-Mach. Syst. 45, 228–237 (2015)CrossRefGoogle Scholar
  28. 28.
    D. Helbing, P. Molnar, Social force model for pedestrian dynamics. Phys. Rev. E 51, 4282–4286 (1995)CrossRefGoogle Scholar
  29. 29.
    F. Zanlungo, T. Ikeda, T. Kanda, Social force model with explicit collision prediction. Europhys. Lett. 93, 68005 (2011)CrossRefGoogle Scholar
  30. 30.
    T. Kanda, et al., Analysis of people trajectories with ubiquitous sensors in a science museum, in IEEE International Conference on Robotics and Automation (ICRA2007), pp. 4846–4853, 2007Google Scholar
  31. 31.
    K. Hayashi, M. Shiomi, T. Kanda, N. Hagita, Friendly Patrolling: A Model of Natural Encounters, Robotics: Science and Systems Conference (RSS2011), 2011Google Scholar
  32. 32.
    Y. Kato, T. Kanda and H. Ishiguro, May I Help You?: Design of Human-Like Polite Approaching Behavior, Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction (HRI2015), pp. 35–42, 2015Google Scholar
  33. 33.
    T. Kitade, S. Satake, T. Kanda, M. Imai, Understanding suitable locations for waiting, in Proceedings of the 8th ACM/IEEE international conference on Human-robot interaction (ed: IEEE Press, 2013), pp. 57–64Google Scholar
  34. 34.
    R. Murakami, L.Y. Morales Saiki, S. Satake, T. Kanda, H. Ishiguro, Destination unknown: walking Side-by-Side without knowing the goal, in Proceedings of the 2014 ACM/IEEE international conference on Human-robot interaction (ed: ACM, 2014), pp. 471–478Google Scholar
  35. 35.
    M. Seder, I. Petrovic, Dynamic window based approach to mobile robot motion control in the presence of moving obstacles, in IEEE International Conference on Robotics and Automation (ICRA2007), pp. 1986–1991, 2007Google Scholar
  36. 36.
    M. Shiomi, F. Zanlungo, K. Hayashi, T. Kanda, Towards a socially acceptable collision avoidance for a mobile robot navigating among pedestrians using a pedestrian model. Int. J. Soc. Robot. 6, 443–455 (2014)CrossRefGoogle Scholar
  37. 37.
    H. Kidokoro, T. Kanda, D. Brščić, M. Shiomi, Will I Bother Here?-a robot anticipating its influence on pedestrian walking comfort, in ACM/IEEE International Conference on Human-Robot Interaction (HRI2013) (ed: IEEE, 2013), pp. 259–266Google Scholar
  38. 38.
    C. Bartneck, C. Rosalia, R. Menges, I. Deckers, Robot Abuse? a limitation of the media equation, in Proceedings of the interact 2005 workshop on agent abuse, Rome, ed, 2005Google Scholar
  39. 39.
    P. Salvini, et al., How Safe Are Service Robots in Urban Environments? bullying a robot, IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN2010), pp. 1–7, 2010Google Scholar
  40. 40.
    T. Nomura, et al., Why Do Children Abuse Robots?, in Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction Extended Abstracts (ed: ACM, 2015), pp. 63–64Google Scholar
  41. 41.
    D. Brščić, H. Kidokoro, Y. Suehiro, T. Kanda, Escaping from children’s abuse of social robots, in Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction (ed: ACM, 2015), pp. 59–66Google Scholar
  42. 42.
    C. Shi, M. Shiomi, C. Smith, T. Kanda, H. Ishiguro, A Model of Distributional Handing Interaction for a Mobile Robot, Robotics: Science and Systems Conference (RSS2013), 2013Google Scholar
  43. 43.
    S. Satake, K. Nakatani, K. Hayashi, T. Kanda, M. Imai, What should we know to develop an information robot? Peerj Comput. Sci. 1, e8 (2015)CrossRefGoogle Scholar
  44. 44.
    Y. Okuno, T. Kanda, M. Imai, H. Ishiguro, N. Hagita, Providing route directions: design of robot’s utterance, gesture, and timing, in ACM/IEEE International Conference on Human-Robot Interaction (HRI2009), pp. 53–60, 2009Google Scholar
  45. 45.
    Y. Morales, S. Satake, T. Kanda, N. Hagita, Modeling environments from a route perspective, in ACM/IEEE International Conference on Human Robot Interaction (HRI2011), pp. 441–448, 2011Google Scholar
  46. 46.
    D.F. Glas, T. Kanda, H. Ishiguro, N. Hagita, Teleoperation of multiple social robots. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 42, 530–544 (2012)CrossRefGoogle Scholar
  47. 47.
    K. Zheng, D. F. Glas, T. Kanda, H. Ishiguro, N. Hagita, How Many Social Robots Can One Operator Control?, in ACM/IEEE Int. Conf. on Human-Robot Interaction (HRI2011), (ed. Lausanne, Switzerland, 2011), pp. 379–386Google Scholar
  48. 48.
    S. Satake, K. Hayashi, K. Nakatani, T. Kanda, Field trial of an information-providing robot in a shopping mall, in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (ed: IEEE, 2015), pp. 1832–1839Google Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  1. 1.ATR Intelligent Robotics Communication LaboratoriesKyotoJapan

Personalised recommendations