Advertisement

History and Natural History of Plants and Their Associates

  • Makoto KatoEmail author
Chapter
Part of the Ecological Research Monographs book series (ECOLOGICAL)

Abstract

Life on Earth originated in the sea; thus, land is a frontier for aquatic organisms. Although colonization of land by plants occurred in the Ordovician about 450 million years ago (ma; Field et al. 2015), aquatic microorganisms colonized land as early as 3500 mya (Beraldi-Campesi 2013). When aquatic microorganisms (including cyanobacteria) headed to land, they encountered adverse terrestrial conditions such as drought, extreme diurnal and seasonal temperature changes, low nutrient supply, and strong sunlight. These microorganisms are considered to have achieved terrestrialization by developing a tough, pigmented cell wall, an agglutinated colony structure, and a symbiotic lifestyle. Although modern lichens are associations of internal algae with external advanced fungi belonging to Ascomycetes and Basidiomycetes, colonylike associations of microorganisms, including basal algae and fungi, are thought to have colonized land before the Phanerozoic. Colonization of terrestrial habitats by photosynthesizing multicellular organisms occurred in a clade of green plants containing chlorophyll a and b (Delaux et al. 2012). The order Charales in the division Charophyte adapted to life in ephemeral freshwater pools, which frequently dry up. The body of the Charales is a monoploid gametophyte and comprises a main axis and lateral branchlets occurring in whorls on each node of the axis (Fig. 2.1). The reproductive organs consist of the nucleus (i.e., archegonia-producing ova) and globules (i.e., antheridia-producing flagellate sperm; Fig. 2.2). The sperm swim to the archegonium and fertilize the ovum. The zygote develops into an oospore, which is protected by its tough cell wall containing an unusually stable polymer, sporopollenin. The oospore can resist desiccation by remaining in a dormant state, and undergoes meiosis before germination of protonema. Another charophyte order, Coleochaetales, is a parenchymatous disclike alga that grows on substrata in waterfront habitats (Fig. 2.1). In the Coleochaete, plural meiospores are produced from a zygote, suggesting that embryos are protected and nourished in maternal tissue (Graham and Wilcox 2000).

Keywords

Terrestrialization Tracheophyte Mycorrhiza Origin of pollination Angiosperm diversification Bee Seed dispersal Bird Mammal Cultivation mutualism 

Literature Cited

  1. Angiosperm Phylogeny Group (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot J Linn Soc 141:300–436Google Scholar
  2. Askew RR (1980) The diversity of insect communities in leaf-mines and plant galls. J Anim Ecol 49:817–829CrossRefGoogle Scholar
  3. Barriault I, Barabé D, Cloutier L, Gibernau M (2010) Pollination ecology and reproductive success in Jack-in-the-pulpit (Arisaema triphyllum) in Québec (Canada). Plant Biol 12:161–171PubMedCrossRefGoogle Scholar
  4. Bawa KS (1990) Plant–pollinator interactions in tropical rain forests. Annu Rev Ecol Syst 21:399–422CrossRefGoogle Scholar
  5. Beardsley PM, Yen A, Olmstead RG (2003) AFLP phylogeny of Mimulus section Erythranthe and the evolution of hummingbird pollination. Evolution 57:1397–1410PubMedCrossRefGoogle Scholar
  6. Beattie AJ, Hughes L (2002) Ant–plant interactions. In: Herrera CM, Pellmyr O (eds) Plant–animal interactions: an evolutionary approach. Blackwell Science, Oxford, pp 211–235Google Scholar
  7. Beattie AJ, Turnbull CL, Knox RB, Williams EG (1984) Ant inhibition of pollen function: a possible reason why ant pollination is rare. Am J Bot 71:421–426CrossRefGoogle Scholar
  8. Bentley BL (1977) Extrafloral nectaries and protection by pugnacious bodyguards. Annu Rev Ecol Syst 8:407–427CrossRefGoogle Scholar
  9. Beraldi-Campesi H (2013) Early life on land and the first terrestrial ecosystems. Ecol Process 2:1CrossRefGoogle Scholar
  10. Bidartondo MI (2005) The evolutionary ecology of myco-heterotrophy. New Phytol 167:335–352PubMedCrossRefGoogle Scholar
  11. Bidartondo MI, Read DJ, Trappe JM, Merckx V, Ligrone R, Duckett JG (2011) The dawn of symbiosis between plants and fungi. Biol Lett 7:574–577PubMedPubMedCentralCrossRefGoogle Scholar
  12. Blanco MA, Barboza G (2005) Pseudocopulatory pollination in Lepanthes (Orchidaceae: Pleurothallidinae) by fungus gnats. Ann Bot 95:763–772PubMedPubMedCentralCrossRefGoogle Scholar
  13. Brian WM, Trautwein MD, Winkler IS, Barr NB, Kim JW, Lambkin C, Bertone MA, Cassel BK, Bayless KM, Heimberg AM, Wheeler BM, Peterson KJ, Pape T, Sinclair BJ, Skevington JH, Blagoderov V, Caravas J, Kutty SN, Schmidt-Ott U, Kampmeier GE, Thompson FC, Grimaldi DA, Beckenbach AT, Courtney GW, Friedrich M, Meier R, Yeates DK (2011) Episodic radiations in the fly tree of life. Proc Natl Acad Sci 108:5690–5695CrossRefGoogle Scholar
  14. Buchmann SL (1987) The ecology of oil flowers and their bees. Annu Rev Ecol Syst 18:343–369CrossRefGoogle Scholar
  15. Clarke D, Whitney H, Gregory G, Robert D (2013) Detection and learning of floral electric fields by bumblebees. Science 340:66–69PubMedCrossRefGoogle Scholar
  16. Condit IJ (1947) The fig. Chronica Botanica Co., WalthamGoogle Scholar
  17. Cook JM, Rasplus JY (2003) Mutualists with attitude: coevolving fig wasps and figs. Trends Ecol Evol 18:241–248CrossRefGoogle Scholar
  18. Cox CJ, Li B, Foster PG, Embley TM, Civáň P (2014) Conflicting phylogenies for early land plants are caused by composition biases among synonymous substitutions. Syst Biol 63:272–279PubMedPubMedCentralCrossRefGoogle Scholar
  19. Cronk Q, Ojeda I (2008) Bird-pollinated flowers in an evolutionary and molecular context. J Exp Bot 59:715–727PubMedCrossRefGoogle Scholar
  20. Cunningham DD (1888) On the phenomena of fertilization in Ficus roxburghii Wall. Ann R Bot Gard Calcutta 1:11–51Google Scholar
  21. Delaux PM, Nanda AK, Mathé C, Sejalon-Delmas N, Dunand C (2012) Molecular and biochemical aspects of plant terrestrialization. Persp Plant Ecol Evol System 14:49–59CrossRefGoogle Scholar
  22. Desirò A, Duckett JG, Pressel S, Villarreal JC, Bidartondo MI (2013) Fungal symbioses in hornworts: a chequered history. Proc Roy Soc London B 280(1759):20130207CrossRefGoogle Scholar
  23. Diamond J (2002) Evolution, consequences and future of plant and animal domestication. Nature 418:700–707PubMedCrossRefGoogle Scholar
  24. Dupont YL, Hansen DM, Valido A, Olesen JM (2004) Impact of introduced honey bees on native pollination interactions of the endemic Echium wildpretii (Boraginaceae) on Tenerife, Canary Islands. Biol Conserv 118:301–311CrossRefGoogle Scholar
  25. Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 18:586–608CrossRefGoogle Scholar
  26. FAOSTAT (2014) The Food and Agriculture Organization Corporate Statistical DatabaseGoogle Scholar
  27. Field KJ, Pressel S, Duckett JG, Rimington WR, Bidartondo MI (2015) Symbiotic options for the conquest of land. Trends Ecol Evol 30:477–486PubMedCrossRefGoogle Scholar
  28. Fleming TH, Geiselman C, John Kress W (2009) The evolution of bat pollination: a phylogenetic perspective. Ann Bot 104:1017–1043PubMedPubMedCentralCrossRefGoogle Scholar
  29. Fletcher QE, Boutin S, Lane JE, LaMontagne JM, McAdam AG, Krebs CJ, Humphries MM (2010) The functional response of a hoarding seed predator to mast seeding. Ecology 91:2673–2683PubMedCrossRefGoogle Scholar
  30. Fordyce JA (2010) Host shifts and evolutionary radiations of butterflies. Proc R Soc B 277:3735–3743PubMedPubMedCentralCrossRefGoogle Scholar
  31. Galil J, Eisikowitch D (1969) Further studies on the pollination ecology of Ficus sycomorus L. (Hymenoptera, Chalcidoidea, Agaonidae). Tijdschr Entomol 112:1–13Google Scholar
  32. Gaskett AC (2011) Orchid pollination by sexual deception: pollinator perspectives. Biol Rev Camb Philos Soc 86:33–75PubMedCrossRefGoogle Scholar
  33. Graham LK, Wilcox LW (2000) The origin of alternation of generations in land plants: a focus on matrotrophy and hexose transport. Philos Trans R Soc Lond B 355:757–767CrossRefGoogle Scholar
  34. Grodzinski U, Clayton NS (2010) Problems faced by food-caching corvids and the evolution of cognitive solutions. Philos Trans R Soc Lond B 365:977–987CrossRefGoogle Scholar
  35. Hansen DM, Olesen JM, Jones CG (2002) Trees, birds and bees in Mauritius: exploitative competition between introduced honey bees and endemic nectarivorous birds? J Biogeog 29:721–734CrossRefGoogle Scholar
  36. Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320PubMedPubMedCentralCrossRefGoogle Scholar
  37. Hata H, Kato M (2006) A novel obligate cultivation mutualism between damselfish and Polysiphonia algae. Biol Lett 2:593–596PubMedPubMedCentralCrossRefGoogle Scholar
  38. Hata H, Watanabe K, Kato M (2010) Geographic variation in the damselfish-red alga cultivation mutualism in the Indo-West Pacific. BMC Evol Biol 10:185PubMedPubMedCentralCrossRefGoogle Scholar
  39. Heil M, McKey D (2003) Protective ant–plant interactions as model systems in ecological and evolutionary research. Annu Rev Ecol Evol Syst 34:425–453CrossRefGoogle Scholar
  40. Heinrich B (1979) Bumblebee economics. Harvard University Press, CambridgeGoogle Scholar
  41. Heijden MG, Martin FM, Selosse MA, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423PubMedCrossRefGoogle Scholar
  42. Hendrix SD (1980) An evolutionary and ecological perspective of the insect fauna of ferns. Am Nat 115:171–196CrossRefGoogle Scholar
  43. Herre EA, Knowlton N, Mueller UG, Rehner SA (1999) The evolution of mutualisms: exploring the paths between conflict and coorperation. Trends Ecol Evol 14:49–53PubMedCrossRefGoogle Scholar
  44. Herre EA, Jandér KC, Machado CA (2008) Evolutionary ecology of figs and their associates: recent progress and outstanding puzzles. Annu Rev Ecol Evol Syst 39:439–458CrossRefGoogle Scholar
  45. Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, CambridgeCrossRefGoogle Scholar
  46. Howe HF, Smallwood J (1982) Ecology of seed dispersal. Annu Rev Ecol Syst 13:201–228CrossRefGoogle Scholar
  47. Humphreys CP, Franks PJ, Rees M, Bidartondo MI, Leake JR, Beerling DJ (2010) Mutualistic mycorrhiza-like symbiosis in the most ancient group of land plants. Nat Commun 1:103PubMedCrossRefGoogle Scholar
  48. Imada Y, Kato M (2016a) Bryophyte-feeding of Litoleptis (Diptera: Rhagionidae) with descriptions of new species from Japan. Zootaxa 4097:41–58PubMedCrossRefGoogle Scholar
  49. Imada Y, Kato M (2016b) Bryophyte-feeders in a basal brachyceran lineage (Diptera: Rhagionidae: Spaniinae): adult oviposition behavior and changes in the larval mouthpart morphology accompanied with the diet shifts. PLoS ONE 11:e0165808PubMedPubMedCentralCrossRefGoogle Scholar
  50. Imada Y, Kawakita A, Kato M (2011) Allopatric distribution and diversification without niche shift in a bryophyte-feeding basal moth lineage (Lepidoptera: Micropterigidae). Proc R Soc B 176:3026–3033CrossRefGoogle Scholar
  51. Itioka T (2005) Diversity of anti-herbivore defenses in Macaranga. In: Roubik DW, Sakai S, Karim AAH (eds) Pollination ecology and the rain forest: Sarawak studies. Springer, New YorkGoogle Scholar
  52. Itioka T, Nomura N, Inui Y, Itino T, Inoue T (2000) Difference in intensity of ant defense among three species of Macaranga myrmecophyte in a Southeast Asian dipterocarp forest. Biotropica 32:318–326CrossRefGoogle Scholar
  53. Iwata K (1971) Evolution of instinct. Comparative ethology in Hymenoptera. Mano Shoten, Kanagawa, p 503Google Scholar
  54. James TY, Kauff F, Schoch C, Matheny PB, Hofstetter V, Cox C, Celio G, The AFTOL Working Group (2006) Reconstructing the early evolution of the fungi using a six gene phylogeny. Nature 443:818–822PubMedCrossRefGoogle Scholar
  55. Janzen DH (1971) Euglossine bees as long-distance pollinators of tropical plants. Science 171:203–205PubMedCrossRefGoogle Scholar
  56. Janzen DH (1979) How to be a fig. Annu Rev Ecol Syst 10:13–51CrossRefGoogle Scholar
  57. Jersáková J, Johnson SD, Kindlmann P (2006) Mechanisms and evolution of deceptive pollination in orchids. Biol Rev 81:219–235PubMedCrossRefGoogle Scholar
  58. Jousselin E, Hossaert-McKey M, Herre EA, Kjellberg F (2003) Why do fig wasps actively pollinate monoecious figs? Oecologia 134:381–387PubMedCrossRefGoogle Scholar
  59. Kato M (1988) Bumblebee visits to Impatiens spp.: Pattern and efficiency. Oecologia 76:364–370PubMedCrossRefGoogle Scholar
  60. Kato M (1996a) Plant–pollinator interactions in the understory of a lowland mixed dipterocarp forest in Sarawak. Am J Bot 83:732–743CrossRefGoogle Scholar
  61. Kato M (1996b) Effects of parasitoid community structure upon the population dynamics of the honeysuckle leafminer, Chromatomyia suikazurae (Diptera: Agromyzidae). Res Popul Ecol 38:27–40CrossRefGoogle Scholar
  62. Kato M (2002) First records of herbivory on Lycopodiaceae (Lycopsidales) by a dipteran (Pallopteridae) leaf/stem miner. Can Entomol 134:699–702CrossRefGoogle Scholar
  63. Kato M, Inoue T (1994) Origin of insect pollination. Nature 368:195CrossRefGoogle Scholar
  64. Kato M, Kawakita A (2004) Plant–pollinator interactions in New Caledonia influenced by introduced honey bees. Am J Bot 91:1814–1827PubMedCrossRefGoogle Scholar
  65. Kato M, Nagamasu H (1995) Dioecy in the endemic genus Dendrocacalia (Compositae) on the Bonin (Ogasawara) Islands. J Plant Res 108:443–450CrossRefGoogle Scholar
  66. Kato M, Shibata A, Yasui T, Nagamasu H (1999) Impact of introduced honeybees, Apis mellifera, upon native bee communities in the Bonin (Ogasawara) Islands. Res Popul Ecol 41:217–228CrossRefGoogle Scholar
  67. Kato M, Takimura A, Kawakita K (2003) An obligate pollination mutualism and reciprocal diversification in the tree genus Glochidion (Euphorbiaceae). Proc Natl Acad Sci U S A 100:5264–5267PubMedPubMedCentralCrossRefGoogle Scholar
  68. Kato M, Kosaka Y, Kawakita A, Okuyama Y, Kobayashi C, Phimminith T, Thongphan D (2008) Plant–pollinator interactions in tropical monsoon forests in Southeast Asia. Am J Bot 95:1375–1394PubMedCrossRefGoogle Scholar
  69. Kawakami K, Higuchi H (2013) Estimation of the population size and viability of the Bonin White-eye Apalopteron familiare in the Bonin Islands, Japan. Ornithol Sci 12:51–56CrossRefGoogle Scholar
  70. Kenrick P, Crane PR (1997) The origin and early diversification of land plants. A cladistic study. Smithsonian Institute Press, Washington, DCGoogle Scholar
  71. Kiers ET, Denison RF (2008) Sanctions, cooperation, and the stability of plant–rhizosphere mutualisms. Annu Rev Ecol Evol Syst 39:215–236CrossRefGoogle Scholar
  72. Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Bucking H (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882PubMedCrossRefGoogle Scholar
  73. Kjellberg F, Jousselin E, Bronstein JL, Patel A, Yokoyama J, Rasplus JY (2001) Pollination mode in fig wasps: the predictive power of correlated traits. Proc R Soc London, Ser B 268:1113–1121CrossRefGoogle Scholar
  74. Knudsen JT, Olesen JM (1993) Buzz-pollination and patterns in sexual traits in North European Pyrolaceae. Am J Bot 80:900–913CrossRefGoogle Scholar
  75. Koponen A (1990) Entomophily in the Splachnaceae. Bot J Linn Soc 104:115–127CrossRefGoogle Scholar
  76. Kristensen NP (1984) Studies on the morphology and systematics of primitive Lepidoptera (Insecta). Steenstrupia 10:141–191Google Scholar
  77. Labandeira CC (2010) The pollination of mid Mesozoic seed plants and the early history of long-proboscid insects. Ann Mo Bot Gard 97:469–513CrossRefGoogle Scholar
  78. Larson G, Piperno D, Allaby RG, Purugganan MD, Andersson L, Arroyo-Kalin M, Barton L, Climer VC, Denham T, Dobney K, Doust AN, Gepts P, Gilbert MTP, Gremillion K, Lucas L, Lukens L, Marshall FB, Olsen KM, Pires JC, Richerson PJ, Rubio de Casas R, Sanjur OI, Thomas MG, West-Eberhard MJ, Fuller D (2014) Current perspectives and the future of domestication studies. Proc Natl Acad Sci U S A 111:6139–6146PubMedPubMedCentralCrossRefGoogle Scholar
  79. Lengyela S, Govec AD, Latimerd AM, Majerc JD, Dunna RR (2010) Convergent evolution of seed dispersal by ants, and phylogeny and biogeography in flowering plants: a global survey. Perspect Plant Ecol Evol Syst 12:43–55CrossRefGoogle Scholar
  80. Lerner HR, Meyer M, James HF, Hofreiter M, Fleischer RC (2011) Multilocus resolution of phylogeny and timescale in the extant adaptive radiation of Hawaiian honeycreepers. Curr Biol 21:1838–1844PubMedCrossRefGoogle Scholar
  81. Luo Z, Zhang D, Renner SS (2008) Why two kinds of stamens in buzz-pollinated flowers? Experimental support for Darwin’s division-of-labour hypothesis. Funct Ecol 22:794–800CrossRefGoogle Scholar
  82. Machado CA, Jousselin E, Kjellberg F, Compton SG, Herre EA (2001) Phylogenetic relationships, historical biogeography and character evolution of fig-pollinating wasps. Proc R Soc B 268:685–694PubMedPubMedCentralCrossRefGoogle Scholar
  83. Mandyam K, Jumpponen A (2005) Seeking the elusive function of the root-colonising dark septate endophytic fungi. Stud Mycol 53:173–189CrossRefGoogle Scholar
  84. Martin-Ordas G, Haun D, Colmenares F, Call J (2010) Keeping track of time: evidence for episodic memory in great apes. Anim Cogn 13:331–340PubMedCrossRefGoogle Scholar
  85. McCourt RM, Delwiche CF, Karol KG (2004) Charophyte algae and land plant origins. Trends Ecol Evol 19:661–666PubMedCrossRefGoogle Scholar
  86. Michener CD (2007) The bees of the world. Johns Hopkins Univ Press, BaltimoreGoogle Scholar
  87. Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C et al (2014) Phylogenomics resolves the timing and pattern of insect evolution. Science 346:763–767PubMedCrossRefGoogle Scholar
  88. Molbo D, Machado CA, Sevenster JG, Keller L, Herre EA (2003) Cryptic species of fig-pollinating wasps: implications for the evolution of the fig–wasp mutualism, sex allocation, and precision of adaptation. Proc Natl Acad Sci U S A 100:5867–5872PubMedPubMedCentralCrossRefGoogle Scholar
  89. Momose K, Yumoto T, Nagamitsu T, Kato M, Nagamasu M, Sakai S, Harrison RD, Itioka T, Inoue T (1998) Pollination biology in a lowland dipterocarp forest in Sarawak, Malaysia. I. Characteristics of the plant–pollinator community in a lowland dipterocarp forest. Am J Bot 85:1477–1501PubMedCrossRefGoogle Scholar
  90. Mueller UG, Gerardo NM, Aanen DK, Six DL, Schultz TR (2005) The evolution of agriculture in insects. Annu Rev Ecol Evol Syst 36:563–595CrossRefGoogle Scholar
  91. Ogura-Tsujita Y, Hirayama Y, Sakoda A, Suzuki A, Ebihara A, Morita N, Imaichi R (2016) Arbuscular mycorrhizal colonization in field-collected terrestrial cordate gametophytes of pre-polypod leptosporangiate ferns (Osmundaceae, Gleicheniaceae, Plagiogyriaceae, Cyatheaceae). Mycorrhiza 26:87–97PubMedCrossRefGoogle Scholar
  92. Okamoto T, Okuyama Y, Goto R, Tokoro M, Kato M (2015) Parallel chemical switches underlying pollinator isolation in Asian Mitella. J Evol Biol 28:590–600PubMedPubMedCentralCrossRefGoogle Scholar
  93. Okuyama Y, Kato M, Murakami M (2004) Pollination by fungus gnats in four species of the genus Mitella (Saxifragaceae). Bot J Linn Soc 144:449–460CrossRefGoogle Scholar
  94. Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals? Oikos 120:321–326CrossRefGoogle Scholar
  95. Pellmyr O (1997) Pollinating seed eaters: why is active pollination so rare? Ecology 78:1655–1660CrossRefGoogle Scholar
  96. Pellmyr O (2003) Yuccas, yucca moths, and coevolution: a review. Ann Mo Bot Gard 90:35–55CrossRefGoogle Scholar
  97. Pellmyr O, Huth CJ (1994) Evolutionary stability of mutualism between yuccas and yucca moths. Nature 372:257–260CrossRefGoogle Scholar
  98. Pellmyr O, Krenn HW (2002) Origin of a complex key innovation in an obligate insect–plant mutualism. Proc Natl Acad Sci U S A 99:5498–5502PubMedPubMedCentralCrossRefGoogle Scholar
  99. Pellmyr O, Thompson JN (1992) Multiple occurrences of mutualism in the yucca moth lineage. Proc Natl Acad Sci U S A 89:2927–2929PubMedPubMedCentralCrossRefGoogle Scholar
  100. Pellmyr O, Leebens-Mack J, Huth CJ (1996a) Non-mutualistic yucca moths and their evolutionary consequences. Nature 380:155PubMedCrossRefGoogle Scholar
  101. Pellmyr O, Thompson JN, Brown JM, Harrison RG (1996b) Evolution of pollination and mutualism in the yucca moth lineage. Am Nat 148:827–847CrossRefGoogle Scholar
  102. Powell JA (1992) Interrelationships of yuccas and yucca moths. Trends Ecol Evol 7:10–15PubMedCrossRefGoogle Scholar
  103. Ramírez W (1969) Fig wasps: mechanisms of pollen transfer. Science 163:580–581CrossRefGoogle Scholar
  104. Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921PubMedCrossRefGoogle Scholar
  105. Regier JC, Shultz JW, Zwick A, Hussey A, Ball B, Wetzer R, Martin JW, Cunningham CW (2010) Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 463:1079–1083PubMedCrossRefGoogle Scholar
  106. Regier JC, Mitter C, Kristensen NP, Davis DR, Van Nieukerken EJ, Rota J et al (2015) A molecular phylogeny for the oldest (nonditrysian) lineages of extant Lepidoptera, with implications for classification, comparative morphology and life-history evolution. Syst Entomol 40:671–704CrossRefGoogle Scholar
  107. Ren R, Labandeira CC, Santiago-Blay JA, Rasnitsyn A, Shih CK, Bashkuev A, Amelia M, Logan V, Hotton CL, Dilcher D (2009) A probable pollination mode before angiosperms: Eurasian, long-proboscid scorpionflies. Science 326:840–847PubMedPubMedCentralCrossRefGoogle Scholar
  108. Riley CV (1872) The fertilization of the yucca plant by Pronuba yuccasella. Can Entomol 4:182CrossRefGoogle Scholar
  109. Riley CV (1873) On a new genus in the lepidopterous family Tineidae, with remarks on the fertilization of yucca. Trans Acad Sci St Louis 3:55–64Google Scholar
  110. Riley CV (1880) The true and bogus yucca moth, with remarks on the pollination of Yucca. Am Entomol 3:141–145Google Scholar
  111. Riley CV (1881) Further notes on the pollination of Yucca and on Pronuba and Prodoxus. Proc Am Assoc Adv Sci 29:617–639Google Scholar
  112. Romero GQ, Benson WW (2005) Biotic interactions of mites, plants and leaf domatia. Curr Opin Plant Biol 8:436–440PubMedCrossRefGoogle Scholar
  113. Ronquist F, Klopfstein S, Vilhelmsen L, Schulmeister S, Murray DL, Rasnitsyn AP (2012) A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Syst Biol 61:973–999PubMedPubMedCentralCrossRefGoogle Scholar
  114. Roubik DW (1992) Ecology and natural history of tropical bees. Cambridge University Press, CambridgeGoogle Scholar
  115. Sakagami SF, Maeta Y (1989) Compatibility and incompatibility of solitary life with eusociality in two normally solitary bees Ceratina japonica and Ceratina okinawana (Hymenoptera: Apoidea) with notes on the incipient phase of eusociality. Jpn J Ent 57:417–439Google Scholar
  116. Sakai S (2002) A review of brood-site pollination mutualism: plants providing breeding sites for their pollinators. J Plant Res 115:161–168PubMedCrossRefGoogle Scholar
  117. Sakai S, Kato M, Nagamasu H (2000) Artocarpus (Moraceae)–gall midge pollination mutualism mediated by a male-flower parasitic fungus. Am J Bot 87:440–445PubMedCrossRefGoogle Scholar
  118. Sakai S, Harrison RD, Momose K, Kuraji K, Nagamasu H, Yasunari T, Chong L, Nakashizuka T (2006) Irregular droughts trigger mass flowering in aseasonal tropical forests in Asia. Am J Bot 93:1134–1139PubMedCrossRefGoogle Scholar
  119. Sawamura M, Kawakita A, Kato M (2009) Fern–spore-feeder interaction in temperate forests in Japan: sporing phenology and spore-feeding insect community. Am J Bot 96:594–604PubMedCrossRefGoogle Scholar
  120. Schiestl FP, Ayasse M, Paulus HF, Löfstedt C, Hansson BS, Ibarra F, Francke W (1999) Orchid pollination by sexual swindle. Nature 399:421CrossRefGoogle Scholar
  121. Simon L, Bousquet J, Levesque C, Lalonde M (1993) Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 363:67–69CrossRefGoogle Scholar
  122. Simon R, Holderied MW, Koch CU, von Helversen O (2011) Floral acoustics: conspicuous echoes of a dish-shaped leaf attract bat pollinators. Science 333:631–633PubMedCrossRefGoogle Scholar
  123. Sorensen AE (1986) Seed dispersal by adhesion. Annu Rev Ecol Syst 17:443–463CrossRefGoogle Scholar
  124. Stout JC, Goulson D, Allen JA (1998) Repellent scent-marking of flowers by a guild of foraging bumblebees (Bombus spp.) Behav Ecol Sociobiol 43:317–326CrossRefGoogle Scholar
  125. Suetsugu K, Kawakita A, Kato M (2015) Avian seed dispersal in a mycoheterotrophic orchid Cyrtosia septentrionalis. Nat Plants 1:15052CrossRefGoogle Scholar
  126. Sun G, Ji Q, Dilcher DL, Zheng S, Nixon KC, Wang X (2002) Archaefructaceae, a new basal angiosperm family. Science 296:899–904PubMedCrossRefGoogle Scholar
  127. Tanaka HO, Itioka T (2011) Ants inhabiting myrmecophytic ferns regulate the distribution of lianas on emergent trees in a Bornean tropical rainforest. Biol Lett 7:706–709PubMedPubMedCentralCrossRefGoogle Scholar
  128. The Plant List (2013) Version 1.1. Available at: http://www.theplantlist.org/
  129. Thien LB, Bernhardt P, Gibbs GW, Pellmyr O, Bergström G, Groth I, McPherson G (1985) The pollination of Zygogynum (Winteraceae) by a moth, Sabatinca (Micropterigidae): an ancient association? Science 227:540–543PubMedCrossRefGoogle Scholar
  130. Thien LB, Sage TL, Jaffré T, Bernhardt P, Pontieri V, Weston PH, Malloch D, Azuma H, Graham SW, McPherson MA, Rai HS, Sage RF, Dupre J-L (2003) The population structure and floral biology of Amborella trichopoda (Amborellaceae). Ann Mo Bot Gard 90:466–490CrossRefGoogle Scholar
  131. Thompson JN (1994) The coevolutionary process. The University of Chicago Press, ChicagoCrossRefGoogle Scholar
  132. Thompson JN (2005) The geographic mosaic of coevolution. The University of Chicago Press, ChicagoGoogle Scholar
  133. Tsai HF, Liu JS, Staben C, Christensen MJ, Latch GC, Siegel MR, Schardl CL (1994) Evolutionary diversification of fungal endophytes of tall fescue grass by hybridization with Epichloë species. Proc Natl Acad Sci U S A 91:2542–2546PubMedPubMedCentralCrossRefGoogle Scholar
  134. van Oudtshoorn KVR, van Rooyen MW (2013) Dispersal biology of desert plants. Springer, BerlinGoogle Scholar
  135. Vander Wall SB (2010) How plants manipulate the scatter-hoarding behaviour of seed-dispersing animals. Philos Trans R Soc Lond B 365:989–997CrossRefGoogle Scholar
  136. von Helversen D, von Helversen O (1999) Acoustic guide in bat-pollinated flower. Nature 398:759–760CrossRefGoogle Scholar
  137. Weiblen GD (2002) How to be a fig wasp. Annu Rev Entomol 47:299–330PubMedCrossRefGoogle Scholar
  138. Weng J-K, Chapple C (2010) The origin and evolution of lignin biosynthesis. New Phytol 187:273–285PubMedCrossRefGoogle Scholar
  139. Wiegmann BM, Trautwein MD, Winkler IS, Barr NB, Kim JW, Lambkin C et al (2011) Episodic radiations in the fly tree of life. Proc Nat Acad Sci 108:5690–5695PubMedPubMedCentralCrossRefGoogle Scholar
  140. Yumoto T, Itino T, Nagamasu H (1997) Pollination of hemiparasites (Loranthaceae) by spider hunters (Nectariniidae) in the canopy of a Bornean tropical rainforest. Selbyana 18:51–60Google Scholar
  141. Zeng L, Zhang Q, Sun R, Kong H, Zhang N, Ma H (2014) Resolution of deep angiosperm phylogeny using conserved nuclear genes and estimates of early divergence times. Nat Commun 5:4956PubMedPubMedCentralCrossRefGoogle Scholar
  142. Zubek S, Piątek K, Naks P, Heise W, Wayda M, Mleczko P (2010) Fungal root endophyte colonization of fern and lycophyte species from the Celaque National Park in Honduras. Am Fern J 100:126–136CrossRefGoogle Scholar
  143. Holm-Nielsen LB (1979) Comments on the distribution and evolution of the genus Phyllanthus. In: Larsen K, Holm-Nielsen LB (eds) Tropical Botany. Academic Press, London, pp 277–290Google Scholar
  144. Wilson RD, Addicott JF (1998) Regulation of mutualism between yuccas and yucca moths: is oviposition behavior responsive to selective abscission of flowers? Oikos 81:109–118Google Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  1. 1.Graduate School of Human and Environmental StudiesKyoto UniversityKyotoJapan

Personalised recommendations