Evolution and Diversity of Obligate Pollination Mutualisms

  • Atsushi KawakitaEmail author
  • Makoto Kato
Part of the Ecological Research Monographs book series (ECOLOGICAL)


It is an exciting time for the study of obligate pollination mutualisms. New mutualisms continue to be discovered, and information on individual systems is rapidly growing. Presently, there are at least seven plant lineages apart from Phyllanthaceae that contain plants pollinated by seed-parasitic insects (Fig. 13.1, Table 13.1). There is little doubt that more such lineages will be discovered, inasmuch as one or two new mutualisms continue to be uncovered each decade. The abundance and heterogeneity of documented cases of obligate pollination mutualism offer an unprecedented opportunity to examine key topics of broad ecological and evolutionary relevance. In this chapter, we review the basic natural history of the seven mutualisms known outside of Phyllanthaceae (Fig. 13.1, Table 13.1) and address the following questions that are critical to our understanding of obligate pollination mutualisms.
  1. 1.

    Why do plants specialize to seed-parasitic pollinators despite the high cost imposed by the seed-feeding pollinator larvae?

  2. 2.

    How are mutualisms maintained despite the potential for selfish partners to disrupt the interaction?

  3. 3.

    Is pollinator specificity reinforced, and if so, why?

  4. 4.

    Do obligate pollination mutualisms drive the reciprocal diversification of plants and pollinators?



Coevolution Evolutionary stability Fig–fig wasp mutualism Host specificity Leafflower–leafflower moth mutualism Reciprocal diversification Yucca–yucca moth mutualism 

Literature Cited

  1. Addicott JF (1996) Cheaters in yucca/moth mutualism. Nature 380:114–115CrossRefGoogle Scholar
  2. Addicott JF, Bao T (1999) Limiting the costs of mutualism: multiple modes of interaction between yuccas and yucca moths. Proc R Soc Lond B 266:197–202CrossRefGoogle Scholar
  3. Althoff DM, Groman JD, Segraves KA, Pellmyr O (2001) Phylogeographic structure of the bogus yucca moth Prodoxus quinquepunctellus: comparisons with coexisting pollinator moths. Mol Phylogenet Evol 21:117–127PubMedCrossRefGoogle Scholar
  4. Althoff DM, Segraves KA, Pellmyr O (2005) Community context of an obligate mutualism: pollinator and florivore effects on Yucca filamentosa. Ecology 86:905–913CrossRefGoogle Scholar
  5. Althoff DM, Segraves KA, Smith CI, Leebens-Mack J, Pellmyr O (2012) Geographic isolation trumps coevolution as a driver of yucca and yucca moth diversification. Mol Phylogenet Evol 62:898–906PubMedCrossRefGoogle Scholar
  6. Althoff DM, Xiao W, Sumoski S, Segraves KA (2013) Florivore impacts on plant reproductive success and pollinator mortality in an obligate pollination mutualism. Oecologia 173:1345–1354PubMedCrossRefGoogle Scholar
  7. Bao T, Addicott JF (1998) Cheating in mutualism: defection of Yucca baccata against its yucca moths. Ecol Lett 1:155–159CrossRefGoogle Scholar
  8. Bogler DJ, Neff JL, Simpson BB (1995) Multiple origins of the yucca–yucca moth association. Proc Natl Acad Sci U S A 92:6864–6867PubMedPubMedCentralCrossRefGoogle Scholar
  9. Brantjes N (1976a) Riddles around pollination of Melandrium album (Mill) Garcke (Caryophyllaceae) during oviposition by Hadena bicruris Hufn (Noctuidae Lepidoptera), 1. Proc K Ned Akad Wet C 79:1–12Google Scholar
  10. Brantjes N (1976b) Riddles around pollination of Melandrium album (Mill) Garcke (Caryophyllaceae) during oviposition by Hadena bicruris Hufn (Noctuidae Lepidoptera), 2. Proc K Ned Akad Wet C 79:127–141Google Scholar
  11. Brown JM, Pellmyr O, Thompson JN, Harrison RG (1994) Mitochondrial DNA phylogeny of the Prodoxidae (Lepidoptera: Incurvarioidea) indicates a rapid ecological diversification of the yucca moths. Ann Entomol Soc Am 87:795–802CrossRefGoogle Scholar
  12. Compton SG, Holton KC, Rashbrook VK, van Noort S, Vincent SL, Ware AB (1991) Studies of Ceratosolen galili, a non-pollinating agaonid fig wasp. Biotropica 23:188–194CrossRefGoogle Scholar
  13. Condit IJ (1947) The fig. Chronica Botanica Co., WalthamGoogle Scholar
  14. Cornille A, Underhill JG, Cruaud A, Hossaert-McKey M, Johnson SD, Tolley KA, Kjellberg F, van Noort S, Proffit M (2012) Floral volatiles, pollinator sharing and diversification in the fig–wasp mutualism: insights from Ficus natalensis, and its two wasp pollinators (South Africa). Proc R Soc B 279:1731–1739PubMedCrossRefGoogle Scholar
  15. Crabb BA, Pellmyr O (2006) Impact of the third trophic level in an obligate mutualism: do yucca plants benefit from parasitoids of yucca moths? Int J Plant Sci 167:119–124CrossRefGoogle Scholar
  16. Després L, Ibanez S, Hemborg ÅM, Godelle B (2007) Geographic and within population variation in the globeflower–globeflower fly interaction: the costs and benefits of rearing pollinators’ larvae. Oecologia 151:240–250PubMedCrossRefGoogle Scholar
  17. Dunn DW, Segar ST, Ridley J, Chan R, Crozier RH, Yu DW, Cook JM (2008) A role for parasites in stabilising the fig–pollinator mutualism. PLoS Biol 6:e59PubMedPubMedCentralCrossRefGoogle Scholar
  18. Engelmann G (1872) The flower of Yucca and its fertilization. Bull Torrey Bot Club 3:33Google Scholar
  19. Fleming TH, Holland JN (1998) The evolution of obligate pollination mutualisms: senita cactus and senita moth. Oecologia 114:368–375PubMedCrossRefGoogle Scholar
  20. Fleming TH, Tuttle MD, Horner MA (1996) Pollination biology and the relative importance of nocturnal and diurnal pollinators in three species of Sonoran Desert columnar cacti. Southwest Nat 41:257–269Google Scholar
  21. Fleming TH, Sahley CT, Holland JN, Nason JD, Hamrick JL (2001) Sonoran Desert columnar cacti and the evolution of generalized pollination systems. Ecol Monogr 71:511–530CrossRefGoogle Scholar
  22. Friberg M, Schwind C, Roark LC, Raguso RA, Thompson JN (2014) Floral scent contributes to interaction specificity in coevolving plants and their insect pollinators. J Chem Ecol 40:955–965PubMedCrossRefGoogle Scholar
  23. Galil J, Eisikowitch D (1969) Further studies on the pollination ecology of Ficus sycomorus L. (Hymenoptera, Chalcidoidea, Agaonidae). Tijdschr Entomol 112:1–13Google Scholar
  24. Gaunt MW, Miles MA (2002) An insect molecular clock dates the origin of the insects and accords with palaeontological and biogeographical landmarks. Mol Biol Evol 19:748–761PubMedCrossRefGoogle Scholar
  25. Godsoe W, Yoder JB, Smith CI, Pellmyr O (2008) Coevolution and divergence in the Joshua tree/yucca moth mutualism. Am Nat 171:816–823PubMedCrossRefGoogle Scholar
  26. Godsoe W, Strand E, Smith CI, Yoder JB, Esque TC, Pellmyr O (2009) Divergence in an obligate mutualism is not explained by divergent climatic requirements. New Phytol 183:589–599PubMedCrossRefGoogle Scholar
  27. Goor A (1965) The history of the fig in the Holy Land from ancient times to the present. Econ Bot 19:124–135CrossRefGoogle Scholar
  28. Goto R, Okamoto T, Kiers ET, Kawakita A, Kato M (2010) Selective flower abortion maintains moth cooperation in a newly discovered pollination mutualism. Ecol Lett 13:321–329PubMedCrossRefGoogle Scholar
  29. Haine ER, Martin J, Cook JM (2006) Deep mtDNA divergences indicate cryptic species in a fig-pollinating wasp. BMC Evol Biol 6:83PubMedPubMedCentralCrossRefGoogle Scholar
  30. Hartmann S, Nason JD, Bhattacharya D (2002) Phylogenetic origins of Lophocereus (Cactaceae) and the senita cactus–senita moth pollination mutualism. Am J Bot 89:1085–1092PubMedCrossRefGoogle Scholar
  31. Heraty JM, Burks RA, Cruaud A, Gibson GAP, Liljeblad J, Munro J, Rasplus J-Y, Delvare G, Janšta P, Gumovsky A, Huber J, Woolley JB, Krogmann L, Heydon S, Polaszek A, Schmidt S, Darling DC, Gates MW, Mottern J, Murray E, Dal Molin A, Triapitsyn S, Baur H, Pinto JD, van Noort S, George J, Yoder M (2013) A phylogenetic analysis of the megadiverse Chalcidoidea (Hymenoptera). Cladistics 29:466–542CrossRefGoogle Scholar
  32. Herre EA, Jandér KC, Machado CA (2008) Evolutionary ecology of figs and their associates: recent progress and outstanding puzzles. Annu Rev Ecol Evol Syst 39:439–458CrossRefGoogle Scholar
  33. Holland JN, Fleming TH (1999) Mutualistic interactions between Upiga virescens (Pyralidae), a pollinating seed-consumer, and Lophocereus schottii (Cactaceae). Ecology 80:2074–2084CrossRefGoogle Scholar
  34. Holland JN, Fleming TH (2002) Co-pollinators and specialization in the pollinating seed-consumer mutualism between senita cacti and senita moths. Oecologia 133:534–540PubMedCrossRefGoogle Scholar
  35. Ibanez S, Gallet C, Dommanget F, Després L (2009) Plant chemical defense: a partner control mechanism stabilising plant–seed-eating pollinator mutualisms. BMC Evol Biol 9:261PubMedPubMedCentralCrossRefGoogle Scholar
  36. Jaeger N, Després L (1998) Obligate mutualism between Trollius europaeus and its seed-parasite pollinators Chiastocheta flies in the Alps. C R Acad Sci III 321:789–796CrossRefGoogle Scholar
  37. Jandér KC, Herre EA (2010) Host sanctions and pollinator cheating in the fig tree–fig wasp mutualism. Proc R Soc B 277:1481–1488PubMedPubMedCentralCrossRefGoogle Scholar
  38. Jandér KC, Herre EA, Simms EL (2012) Precision of host sanctions in the fig tree–fig wasp mutualism: consequences for uncooperative symbionts. Ecol Lett 15:1362–1369CrossRefGoogle Scholar
  39. Jousselin E, Hossaert-McKey M, Herre EA, Kjellberg F (2003) Why do fig wasps actively pollinate monoecious figs? Oecologia 134:381–387PubMedCrossRefGoogle Scholar
  40. Jousselin E, van Noort S, Rasplus JY, Greeff JM (2006) Patterns of diversification of Afrotropical Otiteselline fig wasps: phylogenetic study reveals a double radiation across host figs and conservatism of host association. J Evol Biol 19:253–266PubMedCrossRefGoogle Scholar
  41. Jousselin E, van Noort S, Berry V, Rasplus JY, Rønsted N, Erasmus JC, Greeff JM (2008) One fig to bind them all: host conservatism in a fig wasp community unravelled by cospeciation analyses among pollinating and nonpollinating fig wasps. Evolution 62:1777–1797PubMedCrossRefGoogle Scholar
  42. Kawakita A, Kato M (2004b) Evolution of obligate pollination mutualism in New Caledonian Phyllanthus (Euphorbiaceae). Am J Bot 91:410–415PubMedCrossRefGoogle Scholar
  43. Kawakita A, Kato M (2009) Repeated independent evolution of obligate pollination mutualism in the Phyllantheae–Epicephala association. Proc R Soc B 276:417–426PubMedCrossRefGoogle Scholar
  44. Kawakita A, Okamoto T, Goto R, Kato M (2010) Mutualism favours higher host specificity than does antagonism in plant–herbivore interaction. Proc R Soc B 277:2765–2774PubMedPubMedCentralCrossRefGoogle Scholar
  45. Kawakita A, Mochizuki K, Kato M (2015) Reversal of mutualism in a leafflower–leafflower moth association: the possible driving role of a third-party partner. Biol J Linn Soc 116:507–518CrossRefGoogle Scholar
  46. Kephart S, Reynolds RJ, Rutter MT, Fenster CB, Dudash MR (2006) Pollination and seed predation by moths on Silene and allied Caryophyllaceae: evaluating a model system to study the evolution of mutualisms. New Phytol 169:667–680PubMedCrossRefGoogle Scholar
  47. Kiers ET, Rousseau RA, West SA, Denison RF (2003) Host sanctions and the legume–rhizobium mutualism. Nature 425:78–81PubMedCrossRefGoogle Scholar
  48. Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Bucking H (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882PubMedCrossRefGoogle Scholar
  49. Kiester AR, Lande R, Schemske DW (1984) Models of coevolution and speciation in plants and their pollinators. Am Nat 124:220–243CrossRefGoogle Scholar
  50. Kjellberg F, Jousselin E, Bronstein JL, Patel A, Yokoyama J, Rasplus JY (2001) Pollination mode in fig wasps: the predictive power of correlated traits. Proc R Soc London, Ser B 268:1113–1121CrossRefGoogle Scholar
  51. Labouche AM, Bernasconi G (2013) Cost limitation through constrained oviposition site in a plant–pollinator/seed predator mutualism. Funct Ecol 27:509–521CrossRefGoogle Scholar
  52. Lenz LW (2007) Reassessment of Yucca brevifolia and recognition of Y. jaegeriana as a distinct species. Aliso 24:97–104CrossRefGoogle Scholar
  53. Lopez-Vaamonde C, Rasplus JY, Weiblen GD, Cook JM (2001) Molecular phylogenies of fig wasps: partial cocladogenesis of pollinators and parasites. Mol Phylogenet Evol 21:55–71PubMedCrossRefGoogle Scholar
  54. Machado CA, Robbins N, Gilbert MTP, Herre EA (2005) Critical review of host specificity and its coevolutionary implications in the fig/fig-wasp mutualism. Proc Natl Acad Sci U S A 102:6558–6565PubMedPubMedCentralCrossRefGoogle Scholar
  55. Marussich WA, Machado CA (2007) Host-specificity and coevolution among pollinating and nonpollinating New World fig wasps. Mol Ecol 16:1925–1946PubMedCrossRefGoogle Scholar
  56. McKain MR, McNeal JR, Kellar PR, Eguiarte LE, Pires JC, Leebens-Mack J (2016) Timing of rapid diversification and convergent origins of active pollination within Agavoideae (Asparagaceae). Am J Bot 103:1717–1729PubMedCrossRefGoogle Scholar
  57. Moe AM, Weiblen GD (2012) Pollinator-mediated reproductive isolation among dioecious fig species (Ficus, Moraceae). Evolution 66:3710–3721PubMedCrossRefGoogle Scholar
  58. Molbo D, Machado CA, Sevenster JG, Keller L, Herre EA (2003) Cryptic species of fig-pollinating wasps: implications for the evolution of the fig–wasp mutualism, sex allocation, and precision of adaptation. Proc Natl Acad Sci U S A 100:5867–5872PubMedPubMedCentralCrossRefGoogle Scholar
  59. Morat P (1993) Our knowledge of the flora of New Caledonia: endemism and diversity in relation to vegetation types and substrates. Biodivers Lett 1:72–81CrossRefGoogle Scholar
  60. Okamoto T, Kawakita A, Goto R, Svensson GP, Kato M (2013) Active pollination favours sexual dimorphism in floral scent. Proc R Soc B 280:20132280PubMedPubMedCentralCrossRefGoogle Scholar
  61. Oliver TH, Leather SR, Cook JM (2009) Tolerance traits and the stability of mutualism. Oikos 118:346–352CrossRefGoogle Scholar
  62. Pellmyr O (1989) The cost of mutualism: interactions between Trollius europaeus and its pollinating parasites. Oecologia 78:53–59PubMedCrossRefGoogle Scholar
  63. Pellmyr O (1992) The phylogeny of a mutualism: evolution and coadaptation between Trollius and its seed-parasitic pollinators. Biol J Linn Soc 47:337–365CrossRefGoogle Scholar
  64. Pellmyr O (1997) Pollinating seed eaters: why is active pollination so rare? Ecology 78:1655–1660CrossRefGoogle Scholar
  65. Pellmyr O (1999) A systematic revision of the yucca moths in the Tegeticula yuccasella complex north of Mexico. Syst Entomol 24:243–271CrossRefGoogle Scholar
  66. Pellmyr O (2003) Yuccas, yucca moths, and coevolution: a review. Ann Mo Bot Gard 90:35–55CrossRefGoogle Scholar
  67. Pellmyr O (2012) Pollen load in an active pollinator, the yucca moth Tegeticula yuccasella (Prodoxidae). J Lepid Soc 66:50–51Google Scholar
  68. Pellmyr O, Augenstein EJ (1997) Pollination biology of Hesperaloe parviflora (Agavaceae). Southwest Nat 42:182–187Google Scholar
  69. Pellmyr O, Huth CJ (1994) Evolutionary stability of mutualism between yuccas and yucca moths. Nature 372:257–260CrossRefGoogle Scholar
  70. Pellmyr O, Leebens-Mack J (1999) Forty million years of mutualism: evidence for Eocene origin of the yucca–yucca moth association. Proc Natl Acad Sci U S A 96:9178–9183PubMedPubMedCentralCrossRefGoogle Scholar
  71. Pellmyr O, Seraves KA (2003) Pollinator divergence within an obligate mutualism: two yucca moth species (Lepidoptera; Prodoxidae: Tegeticula) on the Joshua tree (Yucca brevifolia; Agavaceae). Ann Entomol Soc Am 96:716–722CrossRefGoogle Scholar
  72. Pellmyr O, Thompson JN (1992) Multiple occurrences of mutualism in the yucca moth lineage. Proc Natl Acad Sci U S A 89:2927–2929PubMedPubMedCentralCrossRefGoogle Scholar
  73. Pellmyr O, Thompson JN, Brown JM, Harrison RG (1996a) Evolution of pollination and mutualism in the yucca moth lineage. Am Nat 148:827–847CrossRefGoogle Scholar
  74. Pellmyr O, Leebens-Mack J, Huth CJ (1996b) Non-mutualistic yucca moths and their evolutionary consequences. Nature 380:155–156PubMedCrossRefGoogle Scholar
  75. Pellmyr O, Balcázar-Lara M, Althoff DM, Segraves KA, Leebens-Mack J (2006) Phylogeny and life history evolution of Prodoxus yucca moths (Lepidoptera: Prodoxidae). Syst Entomol 31:1–20CrossRefGoogle Scholar
  76. Peng YQ, Duan ZB, Yang DR, Rasplus JY (2008) Co-occurrence of two Eupristina species on Ficus altissima in Xishuangbanna, SW China. Symbiosis 45:9–14Google Scholar
  77. Pettersson MW (1991a) Flower herbivory and seed predation in Silene vulgaris (Caryophyllaceae). Effects of pollination and phenology. Holarct Ecol 14:45–50Google Scholar
  78. Pettersson MW (1991b) Pollination by a guild of fluctuating moth populations: option for unspecialization in Silene vulgaris. J Ecol 79:591–604CrossRefGoogle Scholar
  79. Ramírez W (1969) Fig wasps: mechanisms of pollen transfer. Science 163:580–581CrossRefGoogle Scholar
  80. Richter KS, Weis AE (1995) Differential abortion in yucca. Nature 376:557–558CrossRefGoogle Scholar
  81. Riley CV (1872) The fertilization of the yucca plant by Pronuba yuccasella. Can Entomol 4:182CrossRefGoogle Scholar
  82. Riley CV (1880) The true and bogus yucca moth, with remarks on the pollination of Yucca. Am Entomol 3:141–145Google Scholar
  83. Riley CV (1881) Further notes on the pollination of Yucca and on Pronuba and Prodoxus. Proc Am Assoc Adv Sci 29:617–639Google Scholar
  84. Riley CV (1892) The yucca moth and yucca pollination. Annu Rep MO Bot Gard 3:99–158Google Scholar
  85. Rønsted N, Weiblen GD, Cook JM, Salamin N, Machado CA, Savolainen V (2005) 60 million years of co-divergence in the fig–wasp symbiosis. Proc R Soc B 272:2593–2599PubMedPubMedCentralCrossRefGoogle Scholar
  86. Sakai S (2002) A review of brood-site pollination mutualism: plants providing breeding sites for their pollinators. J Plant Res 115:161–168PubMedCrossRefGoogle Scholar
  87. Sanderson MJ, Donoghue MJ (1996) Reconstructing shifts in diversification rates on phylogenetic trees. Trends Ecol Evol 11:15–20PubMedCrossRefGoogle Scholar
  88. Schluter D (2000) The ecology of adaptive radiation. Oxford University Press, New YorkGoogle Scholar
  89. Segraves KA (2003) Understanding stability in mutualisms: can extrinsic factors balance the yucca–yucca moth interaction? Ecology 84:2943–2951CrossRefGoogle Scholar
  90. Segraves KA (2008) Florivores limit cost of mutualism in the yucca–yucca moth association. Ecology 89:3215–3221CrossRefGoogle Scholar
  91. Smith CI, Pellmyr O, Althoff DM, Balcazar-Lara M, Leebens-Mack JH, Segraves KA (2008a) Pattern and timing of diversification in Yucca (Agavaceae): specialized pollination does not escalate rates of diversification. Proc R Soc B 275:249–258PubMedCrossRefGoogle Scholar
  92. Smith CI, Godsoe WKW, Tank S, Yoder JB, Pellmyr O (2008b) Distinguishing coevolution from covicariance in an obligate pollination mutualism: asynchronous divergence in Joshua tree and its pollinators. Evolution 62:2676–2687PubMedCrossRefGoogle Scholar
  93. Smith CI, Yoder JB, Godsoe W, Pellmyr O (2009) Host specificity and reproductive success of yucca moths (Tegeticula spp., Lepidoptera: Prodoxidae) mirror patterns of gene flow between host plant varieties of Joshua tree (Yucca brevifolia: Agavaceae). Mol Ecol 18:5218–5229PubMedCrossRefGoogle Scholar
  94. Song B, Chen G, Stöcklin J, Peng DL, Niu Y, Li ZM, Sun H (2014) A new pollinating seed-consuming mutualism between Rheum nobile and a fly fungus gnat, Bradysia sp., involving pollinator attraction by a specific floral compound. New Phytol 203:1109–1018PubMedCrossRefGoogle Scholar
  95. Song B, Stöcklin J, Gao Y-Q, Peng D-L, Song M-S, Sun H (2016) Oviposition by mutualistic seed-consuming pollinators reduces fruit abortion in a recently discovered pollination mutualism. Sci Rep 6:29886PubMedPubMedCentralCrossRefGoogle Scholar
  96. Su Z-H, Iino H, Nakamura K, Serrato A, Oyama K (2008) Breakdown of the one-to-one rule in Mexican fig–wasp associations inferred by molecular phylogenetic analysis. Symbiosis 45:73–82Google Scholar
  97. Suchan T, Beauverd M, Trim N, Alvarez N (2015) Asymmetrical nature of the TrolliusChiastocheta interaction: insights into the evolution of nursery pollination systems. Ecol Evol 5:4766–4777PubMedPubMedCentralCrossRefGoogle Scholar
  98. Sun X-J, Xiao J-H, Cook JM, Feng G, Huang D-W (2011) Comparisons of host mitochondrial, nuclear and endosymbiont bacterial genes reveal cryptic fig wasp species and the effects of Wolbachia on host mtDNA evolution and diversity. BMC Evol Biol 11:86PubMedPubMedCentralCrossRefGoogle Scholar
  99. Thompson JN (1994) The coevolutionary process. The University of Chicago Press, ChicagoCrossRefGoogle Scholar
  100. Thompson JN (2005) The geographic mosaic of coevolution. The University of Chicago Press, ChicagoGoogle Scholar
  101. Thompson JN, Cunningham BM (2002) Geographic structure and dynamics of coevolutionary selection. Nature 417:735–738PubMedCrossRefGoogle Scholar
  102. Thompson JN, Pellmyr O (1992) Mutualism with pollinating seed parasites amid co-pollinators: constraints on specialization. Ecology 73:1780–1791CrossRefGoogle Scholar
  103. Thompson JN, Laine A-L, Thompson JF (2010) Retention of mutualism in a geographic diverging interaction. Ecol Lett 13:1368–1377PubMedCrossRefGoogle Scholar
  104. Thompson JN, Schwind C, Guimarães PR, Friberg M (2013) Divergence through multitrait evolution in coevolving interactions. Proc Natl Acad Sci U S A 110:11487–11492PubMedPubMedCentralCrossRefGoogle Scholar
  105. Wang RW, Dunn DW, Sun BF (2014) Discriminative host sanctions in a fig–wasp mutualism. Ecol 95(5):1384–1393CrossRefGoogle Scholar
  106. Wang G, Cannon CH, Chen J (2016) Pollinator sharing and gene flow among closely related sympatric dioecious fig taxa. Proc R Soc B 283:20152963PubMedPubMedCentralCrossRefGoogle Scholar
  107. Weiblen GD (2002) How to be a fig wasp. Annu Rev Entomol 47:299–330PubMedCrossRefGoogle Scholar
  108. Weiblen GD, Bush GL (2002) Speciation in fig pollinators and parasites. Mol Ecol 11:1573–1578PubMedCrossRefGoogle Scholar
  109. Westerbergh A (2004) An interaction between a specialized seed predator moth and its dioecious host plant shifting from parasitism to mutualism. Oikos 105:564–574CrossRefGoogle Scholar
  110. Yokoyama J (2003) Cospeciation of figs and fig-wasps: a case study of endemic species pairs in the Ogasawara Islands. Popul Ecol 45:249–256CrossRefGoogle Scholar
  111. Zhao J-B, Peng Y-Q, Quinnell RJ, Compton SG, Yang D-R (2014) A switch from mutualist to exploiter is reflected in smaller egg loads and increased larval mortalities in a ‘cheater’ fig wasp. Acta Oecol 57:51–57CrossRefGoogle Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  1. 1.Center for Ecological ResearchKyoto UniversityOtsuJapan
  2. 2.Graduate School of Human and Environmental StudiesKyoto UniversityKyotoJapan

Personalised recommendations