Related Topic: Measurement of Diffusion Coefficient of Chemicals

  • Toshinobu SekiEmail author
  • Ryotaro Miki


Some physical penetration-enhancing techniques may create permeation routes in the skin barrier, which may involve water channels for the hydrophilic drugs. In those processes, diffusion in the channels is the major mechanism of transport, and thus, the diffusion coefficient (D) in aqueous medium could be a primary factor for assessing permeation through the skin barrier. Several experimental methods to determine D for chemical compounds in water or other solvents are described in this chapter.


Diffusion coefficient Diffusion cell Permeation Porous-plate method Chromatographic broadening method Dynamic light scattering Nuclear magnetic resonance 


  1. 1.
    Tokumoto S, Higo N, Sugibayashi K (2006) Effect of electroporation and pH on the iontophoretic transdermal delivery of human insulin. Int J Pharm 326:13–19CrossRefPubMedGoogle Scholar
  2. 2.
    Lombry C, Dujardin N, Préat V (2000) Transdermal delivery of macromolecules using skin electroporation. Pharm Res 17:32–37CrossRefPubMedGoogle Scholar
  3. 3.
    Ueda H, Mutoh M, Seki T et al (2009) Acoustic cavitation as an enhancing mechanism of low-frequency sonophoresis for transdermal drug delivery. Biol Pharm Bull 32:916–920CrossRefPubMedGoogle Scholar
  4. 4.
    Zhou CP, Liu YL, Wang HL et al (2010) Transdermal delivery of insulin using microneedle rollers in vivo. Int J Pharm 392:127–133CrossRefPubMedGoogle Scholar
  5. 5.
    Barrow GM (1996) Physical chemisty, 6th edn. McGraw-Hill, New York, pp 838–847Google Scholar
  6. 6.
    Nakagaki M (1986) Physical chemistry for physical property. Nankodo, TokyoGoogle Scholar
  7. 7.
    Stokes RH (1950) An improved diaphragm-cell for diffusion studies, and some tests of the method. J Am Chem Soc 72:763–767CrossRefGoogle Scholar
  8. 8.
    Grushka E, Kikta EJJ (1976) Diffusion in liquids. II. The dependence of the diffusion coefficients on molecular weight and on temperature. J Am Chem Soc 98:643–648CrossRefGoogle Scholar
  9. 9.
    Mosher GL (1994) The determination of interfacial transfer constants using side-by-side diffusion cells. Pharm Res 11:1325–1329CrossRefPubMedGoogle Scholar
  10. 10.
    Seki T, Mochida J, Okamoto M et al (2003) Measurement of diffusion coefficients of parabens and steroids in water and 1-octanol. Chem Pharm Bull 51:734–736CrossRefPubMedGoogle Scholar
  11. 11.
    Seki T, Okamoto M, Hosoya O, Juni K (2000) Measurement of diffusion coefficients of parabens by the chromatographic broadening method. J Pharm Sci Technol Jpn 60:114–117Google Scholar
  12. 12.
    Hosoya O, Chono S, Saso Y et al (2004) Determination of diffusion coefficients of peptides and prediction of permeability through a porous membrane. J Pharm Pharmacol 56:1501–1507CrossRefPubMedGoogle Scholar
  13. 13.
    Renkin EM (1954) Filtration, diffusion, and molecular sieving through porous cellulose membranes. J Gen Physiol 38:225–243PubMedPubMedCentralGoogle Scholar
  14. 14.
    Berne BJ, Pecora R (2000) Dynamic light scattering: with applications to chemistry, biology, and physics. Dover Publications, INC., New YorkGoogle Scholar
  15. 15.
    Pecora R (1985) Dynamic light scattering: applications of photon correlation spectroscopy. Plenum Press, New YorkCrossRefGoogle Scholar
  16. 16.
    Suzuki T (2004) New techniques of preparing a stabile emulsion. Gijutsu-jyohou kyokai, TokyoGoogle Scholar
  17. 17.
    Stait-Gardner T, Anil Kumar PG, Price WS (2008) Steady state effects in PGSE NMR diffusion experiments. Chem Phys Lett 462:331–336CrossRefGoogle Scholar
  18. 18.
    Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42:288–292CrossRefGoogle Scholar
  19. 19.
    Morris KF, Johnson CSJ (1993) Resolution of discrete and continuous molecular size distributions by means of diffusion-ordered 2D NMR spectroscopy. J Am Chem Soc 115:4291–4299CrossRefGoogle Scholar
  20. 20.
    Zhao Q, Brenner T, Matsukawa S (2013) Molecular mobility and microscopic structure changes in κ-carrageenan solutions studied by gradient NMR. Carbohydr Polym 95:458–464CrossRefPubMedGoogle Scholar
  21. 21.
    Johnson CSJ (1999) Diffusion ordered nuclear magnetic resonance spectroscopy: principles and applications. Prog Nucl Magn Reson Spectrosc 34:203–256CrossRefGoogle Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  1. 1.Faculty of Pharmacy and Pharmaceutical SciencesJosai UniversitySakadoJapan

Personalised recommendations