Related Topic: Prodrug Approach

  • Kenji SugibayashiEmail author


The concept of a “prodrug” (Fig. 17.1) was introduced by Albert in 1958 [1]. A prodrug is defined as a derivative from the parent drug that (1) has no or little pharmacological effect, (2) is enzymatically or chemically converted to the parent drug in body, and (3) improves absorption and/or distribution properties of the parent drug and increases the therapeutic effect. A prodrug is designed through the introduction of a moiety to a drug molecule where the moiety is effectively eliminated from the body after performing a role in recovering the shortcomings of the parent drug or increasing the effect of the parent drug. Three kinds of prodrug properties are found: (1) improvement in stability and increase in aqueous solubility or lipophilicity, (2) improvement of absorption properties and/or residence time in the systemic circulation and target tissues, and (3) modification of a bio-reaction (decrease in side effects, improvement of bad taste and smell, and evasion of the first-pass effect).


Antedrug Topical application Skin metabolism 


  1. 1.
    Albert A (1958) Chemical aspects of selective toxicity. Nature 182:421–422Google Scholar
  2. 2.
    Higuchi T (1960) Physical chemical analysis of percutaneous absorption process from creams and ointments. J Soc Cosmetic Chemists 11:70–82Google Scholar
  3. 3.
    Chan SY, Li Wan Po A (1989) Prodrugs for dermal delivery. Int J Pharm 55:1–16Google Scholar
  4. 4.
    Roos TC, Jugert FK, Merk HF, Bickers DR (1998) Retinoid metabolism in the skin. Pharmacol Rev 50:315–333Google Scholar
  5. 5.
    Ziboh VA, Miller CC, Cho Y (2000) Metabolism of polyunsaturated fatty acids by skin epidermal enzymes: generation of anti-inflammatory and antiproliferative metabolites. Am J Clin Nutr 71(Suppl):S361–S366Google Scholar
  6. 6.
    Milosovich S, Hussain A, Dittert L, Aungst B, Hussain M (1993) Testosteronyl-4-dimethylaminobutyrate-HCl: A prodrug with improved skin penetration rate. J Pharm Sci 82:227–228Google Scholar
  7. 7.
    Lipp R, Laurent H, Gunther C, Riedl J, Esperling P, Tauber U (1998) Prodrugs of gestodene for matrix-type transdermal drug delivery systems. Pharm Res 15:1419–1424Google Scholar
  8. 8.
    Lipp R (1994) Selection and use of crystallization inhibitors for steroid loaded transdermal delivery systems. Eur J Pharm Biopharm 40:S85Google Scholar
  9. 9.
    Spiclin P, Gasperlin M, Kmetec V (2001) Stability of ascorbyl palmitate in topical microemulsions. Int J Pharm 222:271–279Google Scholar
  10. 10.
    Austria R, Semenzato A, Bettero A (1997) Stability of vitamin C derivatives in solution and topical formulations. J Pharm Biomed Anal 15:795–801Google Scholar
  11. 11.
    Lee WR, Shen SC, Wang KH, Hu CH, Fang JY (2003) Lasers and microdermabrasion enhance and control topical delivery of vitamin C. J Invest Dermatol 121:1118–1125Google Scholar
  12. 12.
    Yamamoto I, Tai A, Fujinami Y, Sasaki K, Okazaki S (2002) Synthesis and characterization of a series of novel monoacylated ascorbic acid derivatives, 6-O-acyl-2-O-alpha-D-glucopyranosyl-L-ascorbic acids, as skin antioxidants. J Med Chem 45:462–468Google Scholar
  13. 13.
    Tai A, Goto S, Ishiguro Y, Suzuki K, Nitoda T, Yamamoto I (2004) Permeation and metabolism of a series of novel lipophilic ascorbic acid derivatives, 6-O-acyl-2-O-alpha-D-glucopyranosyl-L-ascorbic acids with a branched-acyl chain, in a human living skin equivalent model. Bioorg Med Chem Lett 14:623–627Google Scholar
  14. 14.
    Tai A, Kawasaki D, Sasaki K, Gohda E, Yamamoto I (2003) Synthesis and characterization of 6-O-acyl-2-O-alpha-D-glucopyranosyl-L-ascorbic acids with a branched-acyl chain. Chem Pharm Bull 51:175–180Google Scholar
  15. 15.
    Kyriakides D, Panderi I (2007) Development and validation of a reversed-phase ion-pair high-performance liquid chromatographic method for the determination of risedronate in pharmaceutical preparations. Analytica Chimica Acta 584:153–159Google Scholar
  16. 16.
    Ostacolo C, Marra F, Laneri S, Sacchi A, Nicoli S, Padula C, Santi P (2004) Alpha-tocopherol pro-vitamins: synthesis, hydrolysis and accumulation in rabbit ear skin. J Control Release 99:403–413Google Scholar
  17. 17.
    Mavon A, Raufast V, Redoules D (2004) Skin absorption and metabolism of a new vitamin E prodrug, δ-tocopherol-glucoside: In vitro evaluation in human skin models. J Control Release 100:221–231Google Scholar
  18. 18.
    Duhem N, Danhier F, Préat V (2014) Vitamin E-based nanomedicines for anti-cancer drug delivery. J Control Release 182:33–44Google Scholar
  19. 19.
    Gensler HL, Aickin M, Peng YM, Xu M (1996) Importance of the form of topical vitamin E for prevention of photocarcinogenesis. Nutr Cancer 26:183–191CrossRefPubMedGoogle Scholar
  20. 20.
    Lampen P, Pittermann W, Heise HM, Schmitt M, Jungmann H, Kietzmann M (2003) Penetration studies of vitamin E acetate applied from cosmetic formulations to the stratum corneum of an in vitro model using quantification by tape stripping, UV spectroscopy, and HPLC. J Cosmet Sci 54:119–131Google Scholar
  21. 21.
    Shapiro SS, Saliuo C (2001) Role of vitamins in skin care. Nutrition 17:839–844CrossRefPubMedGoogle Scholar
  22. 22.
    N’Da DD, Breytenbach JC (2009) Synthesis of methoxypoly(ethylene glycol) carbonate prodrugs of zidovudine and penetration through human skin in vitro. J Pharm Pharmacol 61:721–731Google Scholar
  23. 23.
    David D (2014) Prodrug strategies for enhancing the percutaneous absorption of drugs. Molecules 19:20780–20807CrossRefGoogle Scholar
  24. 24.
    Legoabe LJ, Breytenbach JC, N’Da DD, Breytenbach WJ (2010) In-vitro transdermal penetration of cytarabine and its N4-alkylamide derivatives. J Pharm Pharmacol 62:756–761Google Scholar
  25. 25.
    Legoabe LJ, Breytenbach JC, N’Da DD, Breytenbach WJ (2010) Transdermal absorption of cytarabine and its 5’-O-alkyl ester derivatives. Med Chem 6:108–113Google Scholar
  26. 26.
    Wang JJ, Sung KC, Huang JF, Yeh CH, Fang JY (2007) Ester prodrugs of morphine improve transdermal drug delivery: A mechanistic study. J Pharm Pharmacol 59:917–925CrossRefPubMedGoogle Scholar
  27. 27.
    Stinchcomb AL, Swaan PW, Ekabo O, Harris KK, Browe J, Hammell DC, Cooperman TA, Pearsall M (2002) Straight-chain naltrexone ester prodrugs: diffusion and concurrent esterase biotransformation in human skin. J Pharm Sci 91:2571–2578Google Scholar
  28. 28.
    Qandil A, Al-Nabulsi S, Al-Taani B, Tashtoush B (2008) Synthesis of piperazinylalkyl ester prodrugs of ketorolac and their in vitro evaluation for transdermal delivery. Drug Dev Ind Pharm 34:1054–1063CrossRefPubMedGoogle Scholar
  29. 29.
    Puglia C, Filosa R, Peduto A, de Caprariis P, Rizza L, Bonina F, Blasi P (2006) Evaluation of alternative strategies to optimize ketorolac transdermal delivery. AAPS PharmSciTech 7:E1–E9CrossRefGoogle Scholar
  30. 30.
    Liu KS, Hsieh PW, Aljuffali IA, Lin YK, Chang SH, Wang JJ, Fang JY (2014) The impact of ester promoieties on the transdermal delivery of ketorolac. J Pharm Sci 103:974–986Google Scholar
  31. 31.
    Lobo S, Li H, Farhan N, Yan G (2014) Evaluation of diclofenac prodrugs for enhancing transdermal delivery. Drug Dev Ind Pharm 40:425–432CrossRefPubMedGoogle Scholar
  32. 32.
    Yan G, Lobo S, Li H (2014) Can diclofenac ester prodrug promote direct penetration across the skin? J Chem Pharm Res 6:2701–2713Google Scholar
  33. 33.
    Liu KS, Sung KC, Al-Suwayeh SA, Ku MC, Chu CC, Wang JJ, Fang JY (2011) Enhancement of transdermal apomorphine delivery with a diester prodrug strategy. Eur J Pharm Biopharm 78:422–431CrossRefPubMedGoogle Scholar
  34. 34.
    Sloan KB, Bodor N (1982) Hydroxymethyl and acyloxymethyl prodrugs of theophylline: enhanced delivery of polar drugs through skin. Int J Pharm 12:299–313CrossRefGoogle Scholar
  35. 35.
    Kerr D, Roberts W, Tebbett I, Sloan KB (1998) 7-Alkylcarbonyloxymethyl prodrugs of theophylline: topical delivery of theophylline. Int J Pharm 167:37–48CrossRefGoogle Scholar
  36. 36.
    Majumdar S, Mueller-Spaeth M, Sloan KB (2012) Prodrugs of theophylline incorporating ethyleneoxy groups in the promoiety: synthesis, characterization, and transdermal delivery. AAPS PharmSciTech 13:853–862CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Anroop B, Ghosh B, Parcha V, Khanam J (2008) Comparative skin permeability of metoprolol tartrate and its ester prodrugs by passive permeation and iontophoresis. Asian J Pharm Sci 3:47–57Google Scholar
  38. 38.
    Moss GP, Gullick DR, Cox PA, Alexander C, Ingram MJ, Smart JD, Pugh WJ (2006) Design, synthesis and characterization of captopril prodrugs for enhanced percutaneous absorption. J Pharm Pharmacol 58:167–177Google Scholar
  39. 39.
    Hsieh P-W, Aljuffali IA, Fang C-L, Chang S-H, Fang J-Y (2014) Hydroquinone-salicylic acid conjugates as novel anti-melasma actives show superior skin targeting compared to the parent drugs. J Dermatol Sci 76:120–131Google Scholar
  40. 40.
    Laneri S, Sacchi A, di Frassello EA, Luraschi E, Colombo P, Santi P (1999) Ionized prodrugs of dehydroepiandrosterone for transdermal iontophoretic delivery. Pharm Res 16:1818–1824CrossRefPubMedGoogle Scholar
  41. 41.
    Fang JY, Leu YL (2006) Prodrug strategy for enhancing drug delivery via skin. Curr Drug Discov Technol 3:211–224CrossRefPubMedGoogle Scholar
  42. 42.
    Ishii H, Suzuki T, Todo H, Kamimura M, Sugibayashi K (2011) Iontophoresis-facilitated delivery of prednisolone through throat skin to the trachea after topical application of its succinate salt. Pharm Res 28:839–847CrossRefPubMedGoogle Scholar
  43. 43.
    Chen Y, Alberti I, Kalia YN (2016) Topical iontophoretic delivery of ionizable, biolabile acyclovir prodrugs: a rational approach to improve cutaneous bioavailability. Eur J Pharm Biopharm 99:103–113Google Scholar
  44. 44.
    Chen Y, Zahui T, Alberti I, Kalia YN (2016) Cutaneous biodistribution of ionizable, biolabile aciclovir prodrugs after short duration topical iontophoresis: targeted intraepidermal drug delivery. Eur J Pharm Biopharm 99:94–102CrossRefPubMedGoogle Scholar
  45. 45.
    BBeauchanp LM, Orr GF, de Miranda P, Burnette T, Krenitsky TA (1992) Amino acid ester prodrugs of acyclovir. Antiviral Chemistry & Chemotherapy 3:157–164Google Scholar
  46. 46.
    Lee HJ, Soliman MR (1982) Anti-inflammatory steroids without pituitary-adrenal suppression. Science 215:989–991CrossRefPubMedGoogle Scholar
  47. 47.
    Cui H, Quan P, Zhao H, Wen X, Song W, Xiao Y, Zhao Y, Fang L (2015) Mechanism of ion-pair strategy in modulating skin permeability of zaltoprofen: insight from molecular-level resolution based on molecular modeling and confocal laser scanning microscopy. J Pharm Sci 104:3395–3403Google Scholar
  48. 48.
    Megwa SA, Cross SE, Whitehouse MW, Benson HA, Roberts MS (2000) Effect of ion pairing with alkylamines on the in-vitro dermal penetration and local tissue disposition of salicylates. J Pharm Pharmacol 52:929–940Google Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  1. 1.Josai International UniversityToganeJapan
  2. 2.Graduate School of Pharmaceutical Sciences and Faculty of Pharmacy and Pharmaceutical SciencesJosai UniversitySakadoJapan

Personalised recommendations