Advertisement

Dermal Patches, Plasters, and Cataplasms

  • Yasunari MichinakaEmail author
Chapter

Abstract

Many solid transdermal formulations have been developed over the last several decades. These formulations can be classified according to various angles. With respect to water content in the formulation, the non-aqueous solid formulations are called dermal patches or plasters, and the aqueous solid formulations are classified as cataplasms. Similarly, the classification into reservoir type and matrix type can be done from the aspect of patch configuration. This chapter summarizes the various patch formulations already marketed in several countries and provides the basic components and compositions of these formulations.

Keywords

Reservoir type patch Matrix type patch Pressure-sensitive adhesive 

References

  1. 1.
    Higuchi T (1960) Physical chemical analysis of percutaneous absorption process from creams and ointments. J Cosmet Sci 11(2):85–97Google Scholar
  2. 2.
    Crank J (1956) Diffusion in a plane sheet. In: The mathematics of diffusion, Chap. 4. Clarendon press, Oxford, pp 44–68Google Scholar
  3. 3.
    Guy RH et al (1982) A pharmacokinetic model for percutaneous absorption. Int J Pharm 11(2):119–129CrossRefGoogle Scholar
  4. 4.
    Cooper ER, Berner B (1985) Finite dose pharmacokinetics of skin penetration. J Pharm Sci 74(10):1100–1102CrossRefPubMedGoogle Scholar
  5. 5.
    Kubota K, Ishizaki T (1986) A calculation of percutaneous drug absorption-I. Theoretical. Comput Biol Med 16(1):7–19CrossRefPubMedGoogle Scholar
  6. 6.
    Tojo K (1987) Mathematical modeling of transdermal drug delivery. J Chem Eng Jpn 20(3):300–308CrossRefGoogle Scholar
  7. 7.
    Kubota K, Ishizaki T (1986) A diffusion-diffusion model for percutaneous drug absorption. J Pharmacokinet Biopharm 14(4):409–439CrossRefPubMedGoogle Scholar
  8. 8.
    Addicks WJ et al (1989) A mathematical model to describe drug release from thin topical applications. Int J Pharm 56:243–248CrossRefGoogle Scholar
  9. 9.
    Scheuplein RJ (1966) Mechanism of percutaneous absorption. I. Routes of penetration and the influence of solubility. J Invest Dermatol 45:334–346CrossRefGoogle Scholar
  10. 10.
    Stoughton RB (1982) Enhanced percutaneous penetration with 1-dodecylazacycloheptan-2-one. Arch Dermatol 118(7):474–477CrossRefPubMedGoogle Scholar
  11. 11.
    Kanikkannan N et al (2000) Structure-activity relationship of chemical penetration enhancers in transdermal drug delivery. Curr Med Chem 7(6):593–608CrossRefPubMedGoogle Scholar
  12. 12.
    Estraderm product label. Revision07/2012Google Scholar
  13. 13.
    Transiderm-Nitro product label. Revision08/2011Google Scholar
  14. 14.
    Duragesic product label. Revision2005Google Scholar
  15. 15.
    Duragesic product label. Revision07/2009Google Scholar
  16. 16.
    Androderm product label. Revision05/2015Google Scholar
  17. 17.
    Peterson TA et al (1997) Design, development, manufacturing, and testing of transdermal drug delivery systems. In: Transdermal and topical drug delivery systems. Chapter 8. Interpharm Press, Buffalo Grove, pp 249–297Google Scholar
  18. 18.
    Chien YW et al (1983) Comparative controlled skin permeation of nitroglycerin from marketed transdermal delivery systems. J Pharm Sci 72(8):968–970CrossRefPubMedGoogle Scholar
  19. 19.
    Shaw J (1983) Development of transdermal therapeutic systems. Drug Dev Ind Pharm 9(4):579–603CrossRefGoogle Scholar
  20. 20.
  21. 21.
    Kandavilli S et al (2002) Polymers in transdermal drug delivery systems. Pharm Tech 26:62–80Google Scholar
  22. 22.
    Cleary GW (1993) Transdermal delivery systems: a medical rationale. In: Topical drug bioavailability, bioequivalence, and penetration. Chapter 2. Plenum Press, New York and London, pp 17–68CrossRefGoogle Scholar
  23. 23.
    Butrans product label. Revision06/2014Google Scholar
  24. 24.
    Exelon patch product label. Revision06/2013Google Scholar
  25. 25.
    Catapres-TTS product label. Revision10/2011Google Scholar
  26. 26.
    Transderm-Scop product label. Revision04/2013Google Scholar
  27. 27.
    Kraus G et al (1979) Tack and viscoelasticity of block copolymer based adhesive. J Adhes 10(3):221–236CrossRefGoogle Scholar
  28. 28.
    Dale WC et al (1989) Mechanical properties of acrylic pressure sensitive adhesives and their relationships to industry standard testing. J Adhes 31(1):1–20CrossRefGoogle Scholar
  29. 29.
    Heddleson SS, Pfister WR (1993) The Dahlquist criterion: applicability of a rheological criterion to the loss of pressure-sensitive tack in flour-water dough. Cereal Chem 70(6):744–748Google Scholar
  30. 30.
    Tan HS et al (1999) Pressure-sensitive adhesives for transdermal drug delivery systems. Pharm Sci Technolo Today 2(2):60–69CrossRefPubMedGoogle Scholar
  31. 31.
    Taghizadeh SM et al (2007) The effect of poly(vinylpyrrolidone) concentration on peel strength of acrylic/PVP pressure sensitive adhesive blends. Iran Polym J 16(4):279–285Google Scholar
  32. 32.
    Kenney JF et al (1992) Medical-grade acrylic adhesives for skin contact. J Appl Polym Sci 45(2):355–361CrossRefGoogle Scholar
  33. 33.
    Dhal PK et al (1982) Pressure sensitive adhesives of acrylic polymers containing functional monomers. Polymer 23:937–939CrossRefGoogle Scholar
  34. 34.
    Cantor AS, Wirtanen DJ (2002) Novel acrylate adhesives for transdermal drug delivery. Pharm Tech 26(1):28–38Google Scholar
  35. 35.
    Naruse M et al (2012) Development of transdermal therapeutic formulation of CNS5161, a novel n-methyl-d-aspartate receptor antagonist, by utilizing pressure-sensitive adhesives I. Biol Pharm Bull 35(3):321–328CrossRefPubMedGoogle Scholar
  36. 36.
    Thomas X. Silicone adhesives in healthcare applications. Dow Corning, Form No. 52-1057-01Google Scholar
  37. 37.
    Colas A. Silicones in pharmaceutical applications. Dow Corning, Form No. 51-993A-01Google Scholar
  38. 38.
  39. 39.
    Raghavan SL et al (2001) Crystallization of hydrocortisone acetate: influence of polymers. Int J Pharm 212:213–221CrossRefPubMedGoogle Scholar
  40. 40.
    Ma X et al (1996) Control of drug crystallization in transdermal matrix system. Int J Pharm 142:115–119CrossRefGoogle Scholar
  41. 41.
    Sinha VR, Kaur MP (2000) Permeation enhancers for transdermal drug delivery. Drug Dev Ind Pharm 26(11):1131–1140CrossRefPubMedGoogle Scholar
  42. 42.
    Williams AC, Barry BW (2004) Penetration enhancers. Adv Drug Deliv Rev 56:603–618CrossRefPubMedGoogle Scholar
  43. 43.
    Lane ME (2013) Skin penetration enhancers. Int J Pharm 447:12–21CrossRefPubMedGoogle Scholar
  44. 44.
    Barry BW (1987) Mode of action of penetration enhancers in human skin. J Control Rel 6:85–97CrossRefGoogle Scholar
  45. 45.
    Narishetty STK, Panchagnula R (2004) Transdermal delivery of zidovudine: effect of terpenes and their mechanism of action. J Control Rel 95:367–379CrossRefGoogle Scholar
  46. 46.
    Ahad A et al (2009) Chemical penetration enhancers: a patent review. Expert Opin Ther Pat 19(7):969–988CrossRefPubMedGoogle Scholar
  47. 47.
    Kang L et al (2007) Formulation development of transdermal dosage forms: quantitative structure-activity relationship model for predicting activities of terpenes that enhance drug penetration through human skin. J Control Rel 120(3):211–219CrossRefGoogle Scholar
  48. 48.
    ICH Harmonized Tripartite Guideline (2006) Impurities in new drug products Q3B(R2)Google Scholar
  49. 49.
    Zhai H, Maibach HI (2001) Effects of skin occlusion on percutaneous absorption: An overview. Skin Pharmacol Appl Skin Physiol 14:1–10CrossRefPubMedGoogle Scholar
  50. 50.
    Lidoderm product label. Revision01/2015Google Scholar
  51. 51.
    Akazawa M (1997) External anti-inflammatory and analgesic plaster preparation. US Patent 5,607,690Google Scholar
  52. 52.
    Ono M et al (1998) External preparation for application to the skin containing lidocaine. US Patent 5,827,529Google Scholar
  53. 53.
    Kubo J et al (2014) Lidocaine-containing hydrogel patch. US Patent 8,920,831Google Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  1. 1.R&D Division, TDDS Research LaboratoriesHisamitsu Pharmaceuticals Co., Inc.IbarakiJapan

Personalised recommendations