Skip to main content

Dermal Patches, Plasters, and Cataplasms

  • Chapter
  • First Online:
  • 1384 Accesses

Abstract

Many solid transdermal formulations have been developed over the last several decades. These formulations can be classified according to various angles. With respect to water content in the formulation, the non-aqueous solid formulations are called dermal patches or plasters, and the aqueous solid formulations are classified as cataplasms. Similarly, the classification into reservoir type and matrix type can be done from the aspect of patch configuration. This chapter summarizes the various patch formulations already marketed in several countries and provides the basic components and compositions of these formulations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Higuchi T (1960) Physical chemical analysis of percutaneous absorption process from creams and ointments. J Cosmet Sci 11(2):85–97

    Google Scholar 

  2. Crank J (1956) Diffusion in a plane sheet. In: The mathematics of diffusion, Chap. 4. Clarendon press, Oxford, pp 44–68

    Google Scholar 

  3. Guy RH et al (1982) A pharmacokinetic model for percutaneous absorption. Int J Pharm 11(2):119–129

    Article  CAS  Google Scholar 

  4. Cooper ER, Berner B (1985) Finite dose pharmacokinetics of skin penetration. J Pharm Sci 74(10):1100–1102

    Article  CAS  PubMed  Google Scholar 

  5. Kubota K, Ishizaki T (1986) A calculation of percutaneous drug absorption-I. Theoretical. Comput Biol Med 16(1):7–19

    Article  CAS  PubMed  Google Scholar 

  6. Tojo K (1987) Mathematical modeling of transdermal drug delivery. J Chem Eng Jpn 20(3):300–308

    Article  Google Scholar 

  7. Kubota K, Ishizaki T (1986) A diffusion-diffusion model for percutaneous drug absorption. J Pharmacokinet Biopharm 14(4):409–439

    Article  CAS  PubMed  Google Scholar 

  8. Addicks WJ et al (1989) A mathematical model to describe drug release from thin topical applications. Int J Pharm 56:243–248

    Article  CAS  Google Scholar 

  9. Scheuplein RJ (1966) Mechanism of percutaneous absorption. I. Routes of penetration and the influence of solubility. J Invest Dermatol 45:334–346

    Article  Google Scholar 

  10. Stoughton RB (1982) Enhanced percutaneous penetration with 1-dodecylazacycloheptan-2-one. Arch Dermatol 118(7):474–477

    Article  CAS  PubMed  Google Scholar 

  11. Kanikkannan N et al (2000) Structure-activity relationship of chemical penetration enhancers in transdermal drug delivery. Curr Med Chem 7(6):593–608

    Article  CAS  PubMed  Google Scholar 

  12. Estraderm product label. Revision07/2012

    Google Scholar 

  13. Transiderm-Nitro product label. Revision08/2011

    Google Scholar 

  14. Duragesic product label. Revision2005

    Google Scholar 

  15. Duragesic product label. Revision07/2009

    Google Scholar 

  16. Androderm product label. Revision05/2015

    Google Scholar 

  17. Peterson TA et al (1997) Design, development, manufacturing, and testing of transdermal drug delivery systems. In: Transdermal and topical drug delivery systems. Chapter 8. Interpharm Press, Buffalo Grove, pp 249–297

    Google Scholar 

  18. Chien YW et al (1983) Comparative controlled skin permeation of nitroglycerin from marketed transdermal delivery systems. J Pharm Sci 72(8):968–970

    Article  CAS  PubMed  Google Scholar 

  19. Shaw J (1983) Development of transdermal therapeutic systems. Drug Dev Ind Pharm 9(4):579–603

    Article  CAS  Google Scholar 

  20. U.S. Food and Drug Administration (2009) http://www.fda.gov/safety/medwatch/safetyinformation/safetyalertsforhumanmedicalproducts/ucm126727.htm. Accessed 25 Dec 2015

  21. Kandavilli S et al (2002) Polymers in transdermal drug delivery systems. Pharm Tech 26:62–80

    CAS  Google Scholar 

  22. Cleary GW (1993) Transdermal delivery systems: a medical rationale. In: Topical drug bioavailability, bioequivalence, and penetration. Chapter 2. Plenum Press, New York and London, pp 17–68

    Chapter  Google Scholar 

  23. Butrans product label. Revision06/2014

    Google Scholar 

  24. Exelon patch product label. Revision06/2013

    Google Scholar 

  25. Catapres-TTS product label. Revision10/2011

    Google Scholar 

  26. Transderm-Scop product label. Revision04/2013

    Google Scholar 

  27. Kraus G et al (1979) Tack and viscoelasticity of block copolymer based adhesive. J Adhes 10(3):221–236

    Article  CAS  Google Scholar 

  28. Dale WC et al (1989) Mechanical properties of acrylic pressure sensitive adhesives and their relationships to industry standard testing. J Adhes 31(1):1–20

    Article  CAS  Google Scholar 

  29. Heddleson SS, Pfister WR (1993) The Dahlquist criterion: applicability of a rheological criterion to the loss of pressure-sensitive tack in flour-water dough. Cereal Chem 70(6):744–748

    Google Scholar 

  30. Tan HS et al (1999) Pressure-sensitive adhesives for transdermal drug delivery systems. Pharm Sci Technolo Today 2(2):60–69

    Article  CAS  PubMed  Google Scholar 

  31. Taghizadeh SM et al (2007) The effect of poly(vinylpyrrolidone) concentration on peel strength of acrylic/PVP pressure sensitive adhesive blends. Iran Polym J 16(4):279–285

    CAS  Google Scholar 

  32. Kenney JF et al (1992) Medical-grade acrylic adhesives for skin contact. J Appl Polym Sci 45(2):355–361

    Article  CAS  Google Scholar 

  33. Dhal PK et al (1982) Pressure sensitive adhesives of acrylic polymers containing functional monomers. Polymer 23:937–939

    Article  CAS  Google Scholar 

  34. Cantor AS, Wirtanen DJ (2002) Novel acrylate adhesives for transdermal drug delivery. Pharm Tech 26(1):28–38

    CAS  Google Scholar 

  35. Naruse M et al (2012) Development of transdermal therapeutic formulation of CNS5161, a novel n-methyl-d-aspartate receptor antagonist, by utilizing pressure-sensitive adhesives I. Biol Pharm Bull 35(3):321–328

    Article  CAS  PubMed  Google Scholar 

  36. Thomas X. Silicone adhesives in healthcare applications. Dow Corning, Form No. 52-1057-01

    Google Scholar 

  37. Colas A. Silicones in pharmaceutical applications. Dow Corning, Form No. 51-993A-01

    Google Scholar 

  38. U.S. Food and Drug Administration http://www.fda.gov/Safety/MedWatch/SafetyInformation/SafetyAlertsforHumanMedicalProducts/ucm094861.htm. Accessed 25 Dec 2015

  39. Raghavan SL et al (2001) Crystallization of hydrocortisone acetate: influence of polymers. Int J Pharm 212:213–221

    Article  CAS  PubMed  Google Scholar 

  40. Ma X et al (1996) Control of drug crystallization in transdermal matrix system. Int J Pharm 142:115–119

    Article  CAS  Google Scholar 

  41. Sinha VR, Kaur MP (2000) Permeation enhancers for transdermal drug delivery. Drug Dev Ind Pharm 26(11):1131–1140

    Article  CAS  PubMed  Google Scholar 

  42. Williams AC, Barry BW (2004) Penetration enhancers. Adv Drug Deliv Rev 56:603–618

    Article  CAS  PubMed  Google Scholar 

  43. Lane ME (2013) Skin penetration enhancers. Int J Pharm 447:12–21

    Article  CAS  PubMed  Google Scholar 

  44. Barry BW (1987) Mode of action of penetration enhancers in human skin. J Control Rel 6:85–97

    Article  CAS  Google Scholar 

  45. Narishetty STK, Panchagnula R (2004) Transdermal delivery of zidovudine: effect of terpenes and their mechanism of action. J Control Rel 95:367–379

    Article  CAS  Google Scholar 

  46. Ahad A et al (2009) Chemical penetration enhancers: a patent review. Expert Opin Ther Pat 19(7):969–988

    Article  CAS  PubMed  Google Scholar 

  47. Kang L et al (2007) Formulation development of transdermal dosage forms: quantitative structure-activity relationship model for predicting activities of terpenes that enhance drug penetration through human skin. J Control Rel 120(3):211–219

    Article  CAS  Google Scholar 

  48. ICH Harmonized Tripartite Guideline (2006) Impurities in new drug products Q3B(R2)

    Google Scholar 

  49. Zhai H, Maibach HI (2001) Effects of skin occlusion on percutaneous absorption: An overview. Skin Pharmacol Appl Skin Physiol 14:1–10

    Article  CAS  PubMed  Google Scholar 

  50. Lidoderm product label. Revision01/2015

    Google Scholar 

  51. Akazawa M (1997) External anti-inflammatory and analgesic plaster preparation. US Patent 5,607,690

    Google Scholar 

  52. Ono M et al (1998) External preparation for application to the skin containing lidocaine. US Patent 5,827,529

    Google Scholar 

  53. Kubo J et al (2014) Lidocaine-containing hydrogel patch. US Patent 8,920,831

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasunari Michinaka Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Michinaka, Y. (2017). Dermal Patches, Plasters, and Cataplasms. In: Sugibayashi, K. (eds) Skin Permeation and Disposition of Therapeutic and Cosmeceutical Compounds. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56526-0_10

Download citation

Publish with us

Policies and ethics