Advertisement

Targeted Exome Sequencing in Japanese Patients with Retinitis Pigmentosa

  • Maho OishiEmail author
  • Akio Oishi
  • Nagahisa Yoshimura
Chapter
Part of the Essentials in Ophthalmology book series (ESSENTIALS)

Abstract

Screening for causative genes in heterogeneous groups of diseases such as retinitis pigmentosa (RP) has been challenging, until recently. These days, even whole genomes can be sequenced using next-generation sequencers. This technology has enabled comprehensive screening of gene mutations in RP patients. However, whole-genome/exome sequencing is still expensive and takes considerable time and labor. In contrast, targeted exome sequencing focuses on selected genes and thereby enables faster and deeper analysis of the regions of interest at a lower cost. In this chapter, we review the data from our previous study on targeted exome sequencing in Japanese RP patients and discuss the utility and limitations of this technique. We also discuss the mutation spectrum in Japanese RP patients compared to previously reported spectra in other ethnicities.

Keywords

RP Targeted resequencing Exome sequencing Japan EYS 

References

  1. 1.
    Chizzolini M, Galan A, Milan E, Sebastiani A, Costagliola C, Parmeggiani F. Good epidemiologic practice in retinitis pigmentosa: from phenotyping to biobanking. Curr Genomics. 2011;12:260–6.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Simpson DA, Clark GR, Alexander S, Silvestri G, Willoughby CE. Molecular diagnosis for heterogeneous genetic diseases with targeted high-throughput DNA sequencing applied to retinitis pigmentosa. J Med Genet. 2011;48:145–51.CrossRefPubMedGoogle Scholar
  3. 3.
    Neveling K, Collin RW, Gilissen C, van Huet RA, Visser L, Kwint MP, et al. Next-generation genetic testing for retinitis pigmentosa. Hum Mutat. 2012;33:963–72.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Shanks ME, Downes SM, Copley RR, Lise S, Broxholme J, Hudspith KA, et al. Next-generation sequencing (NGS) as a diagnostic tool for retinal degeneration reveals a much higher detection rate in early-onset disease. Eur J Hum Genet. 2013;21:274–80.CrossRefPubMedGoogle Scholar
  5. 5.
    Fu Q, Wang F, Wang H, Xu F, Zaneveld JE, Ren H, et al. Next-generation sequencing-based molecular diagnosis of a Chinese patient cohort with autosomal recessive retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2013;54:4158–66.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wang F, Wang H, Tuan HF, Nguyen DH, Sun V, Keser V, et al. Next generation sequencing-based molecular diagnosis of retinitis pigmentosa: identification of a novel genotype-phenotype correlation and clinical refinements. Hum Genet. 2014;133:331–45.CrossRefPubMedGoogle Scholar
  7. 7.
    Glockle N, Kohl S, Mohr J, Scheurenbrand T, Sprecher A, Weisschuh N, et al. Panel-based next generation sequencing as a reliable and efficient technique to detect mutations in unselected patients with retinal dystrophies. Eur J Hum Genet. 2014;22:99–104.CrossRefPubMedGoogle Scholar
  8. 8.
    Xu Y, Guan L, Shen T, Zhang J, Xiao X, Jiang H, Li S, et al. Mutations of 60 known causative genes in 157 families with retinitis pigmentosa based on exome sequencing. Hum Genet. 2014; doi: 10.1007/s00439-014-1460-2.Google Scholar
  9. 9.
    Hosono K, Ishigami C, Takahashi M, Park DH, Hirami Y, Nakanishi H, et al. Two novel mutations in the EYS gene are possible major causes of autosomal recessive retinitis pigmentosa in the Japanese population. PLoS One. 2012;7:e31036.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Iwanami M, Oshikawa M, Nishida T, Nakadomari S, Kato S. High prevalence of mutations in the EYS gene in Japanese patients with autosomal recessive retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2012;53:1033–40.CrossRefPubMedGoogle Scholar
  11. 11.
    Zhao L, Wang F, Wang H, Li Y, Alexander S, Wang K, et al. Next-generation sequencing-based molecular diagnosis of 82 retinitis pigmentosa probands from Northern Ireland. Hum Genet. 2015;134:217–30.CrossRefPubMedGoogle Scholar
  12. 12.
    Oishi M, Oishi A, Gotoh N, Ogino K, Higasa K, Iida K, et al. Comprehensive molecular diagnosis of a large cohort of Japanese retinitis pigmentosa and Usher syndrome patients by next-generation sequencing. Invest Ophthalmol Vis Sci. 2014;55:7369–75.CrossRefPubMedGoogle Scholar
  13. 13.
    Sikkema-Raddatz B, Johansson LF, de Boer EN, Almomani R, Boven LG, van den Berg MP, et al. Targeted next-generation sequencing can replace Sanger sequencing in clinical diagnostics. Hum Mutat. 2013;34:1035–42.CrossRefPubMedGoogle Scholar
  14. 14.
    Chang F, Li MM. Clinical application of amplicon-based next-generation sequencing in cancer. Cancer Genet. 2013;206:413–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Tewhey R, Warner JB, Nakano M, Libby B, Medkova M, David PH, et al. Microdroplet-based PCR enrichment for large-scale targeted sequencing. Nat Biotechnol. 2009;27:1025–31.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Coonrod EM, Durtschi JD, Margraf RL, Voelkerding KV. Developing genome and exome sequencing for candidate gene identification in inherited disorders: an integrated technical and bioinformatics approach. Arch Pathol Lab Med. 2013;137:415–33.CrossRefPubMedGoogle Scholar
  17. 17.
    Gilissen C, Hoischen A, Brunner HG, Veltman JA. Disease gene identification strategies for exome sequencing. Eur J Hum Genet. 2012;20:490–7.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43:491–8.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, Gibbs RA, et al. A map of human genome variation from population-scale sequencing. Nature. 2010;467:1061–73.CrossRefPubMedGoogle Scholar
  21. 21.
    Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Liu X, Jian X, Boerwinkle E. dbNSFP: a lightweight database of human nonsynonymous SNPs and their functional predictions. Hum Mutat. 2011;32:894–9.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Wang DY, Chan WM, Tam PO, Baum L, Lam DS, Chong KK, et al. Gene mutations in retinitis pigmentosa and their clinical implications. Clin Chim Acta. 2005;351:5–16.CrossRefPubMedGoogle Scholar
  24. 24.
    Abd El-Aziz MM, Barragan I, O’Driscoll CA, Goodstadt L, Prigmore E, Borrego S, et al. EYS, encoding an ortholog of Drosophila spacemaker, is mutated in autosomal recessive retinitis pigmentosa. Nat Genet. 2008;40:1285–7.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Huang XF, Huang F, Wu KC, Wu J, Chen J, Pang CP, et al. Genotype-phenotype correlation and mutation spectrum in a large cohort of patients with inherited retinal dystrophy revealed by next-generation sequencing. Genet Med. 2014; doi: 10.1038/gim.2014.138.Google Scholar
  26. 26.
    Audo I, Sahel J-A, Mohand-Saïd S, Lancelot ME, Antonio A, Moskova-Doumanova V, et al. EYS is a major gene for rod-cone dystrophies in France. Hum Mutat. 2010;31:E1406–35.CrossRefPubMedGoogle Scholar
  27. 27.
    Littink KW, van den Born LI, Koenekoop RK, Collin RW, Zonneveld MN, Blokland EA, et al. Mutations in the EYS gene account for approximately 5% of autosomal recessive retinitis pigmentosa and cause a fairly homogeneous phenotype. Ophthalmology. 2010;117:2026–33. , 2033 e2021–7CrossRefPubMedGoogle Scholar
  28. 28.
    Jinda W, Taylor TD, Suzuki Y, Thongnoppakhun W, Limwongse C, Lertrit P, et al. Whole exome sequencing in Thai patients with retinitis pigmentosa reveals novel mutations in six genes. Invest Ophthalmol Vis Sci. 2014;55:2259–68.CrossRefPubMedGoogle Scholar
  29. 29.
    Yoon CK, Kim NK, Joung JG, Shin JY, Park JH, Eum HH, et al. The diagnostic application of targeted re-sequencing in Korean patients with retinitis pigmentosa. BMC Genomics. 2015;16:515.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    McGee TL, Seyedahmadi BJ, Sweeney MO, Dryja TP, Berson EL. Novel mutations in the long isoform of the USH2A gene in patients with Usher syndrome type II or non-syndromic retinitis pigmentosa. J Med Genet. 2010;47:499–506.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Seyedahmadi BJ, Rivolta C, Keene JA, Berson EL, Dryja TP. Comprehensive screening of the USH2A gene in Usher syndrome type II and non-syndromic recessive retinitis pigmentosa. Exp Eye Res. 2004;79:167–73.CrossRefPubMedGoogle Scholar
  32. 32.
    Avila-Fernandez A, Cantalapiedra D, Aller E, Vallespín E, Aguirre-Lambán J, Blanco-Kelly F, et al. Mutation analysis of 272 Spanish families affected by autosomal recessive retinitis pigmentosa using a genotyping microarray. Mol Vis. 2010;16:2550–8.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Lenassi E, Vincent A, Li Z, Saihan Z, Coffey AJ, Steele-Stallard HB, et al. A detailed clinical and molecular survey of subjects with nonsyndromic USH2A retinopathy reveals an allelic hierarchy of disease-causing variants. Eur J Hum Genet. 2015; doi: 10.1038/ejhg.2014.283.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Zhao Y, Hosono K, Suto K, Ishigami C, Arai Y, Hikoya A, et al. The first USH2A mutation analysis of Japanese autosomal recessive retinitis pigmentosa patients: a totally different mutation profile with the lack of frequent mutations found in Caucasian patients. J Hum Genet. 2014;59:521–8.CrossRefPubMedGoogle Scholar
  35. 35.
    Bowne SJ, Sullivan LS, Koboldt DC, Ding L, Fulton R, Abbott RM, et al. Identification of disease-causing mutations in autosomal dominant retinitis pigmentosa (adRP) using next-generation DNA sequencing. Invest Ophthalmol Vis Sci. 2011;52:494–503.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Fernandez-San Jose P, Blanco-Kelly F, Corton M, Trujillo-Tiebas MJ, Gimenez A, Avila-Fernandez A, et al. Prevalence of Rhodopsin mutations in autosomal dominant Retinitis Pigmentosa in Spain: clinical and analytical review in 200 families. Acta Ophthalmol. 2015;93:e38–44.CrossRefPubMedGoogle Scholar
  37. 37.
    Audo I, Manes G, Mohand-Said S, Lancelot ME, Antonio A, Moskova-Doumanova V, et al. Spectrum of rhodopsin mutations in French autosomal dominant rod-cone dystrophy patients. Invest Ophthalmol Vis Sci. 2010;51:3687–700.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Ziviello C, Simonelli F, Testa F, Anastasi M, Marzoli SB, Falsini B, et al. Molecular genetics of autosomal dominant retinitis pigmentosa (ADRP): a comprehensive study of 43 Italian families. J Med Genet. 2005;42:e47.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Matias-Florentino M, Ayala-Ramirez R, Graue-Wiechers F, Zenteno JC. Molecular screening of rhodopsin and peripherin/RDS genes in Mexican families with autosomal dominant retinitis pigmentosa. Curr Eye Res. 2009;34:1050–6.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  1. 1.Department of Ophthalmology and Visual SciencesKyoto University Graduate School of MedicineKyotoJapan

Personalised recommendations