Skip to main content

Hierarchical Organization of Frontoparietal Control Networks Underlying Goal-Directed Behavior

  • Chapter
  • First Online:
Book cover The Prefrontal Cortex as an Executive, Emotional, and Social Brain

Abstract

Goal-directed behavior involves a variety of processes that operate over different temporal scales, from the generation and maintenance of distal (long-term) goals to the identification of proximal (immediate) subgoals to the execution of actions in service of those goals. There is also evidence suggesting that the neural underpinnings of goal-directed behavior may be organized along a hierarchical anterior-to-posterior gradient, at least within the frontal cortex. In this review, we examine recently identified large-scale functional networks that are composed of regions spanning the frontal, parietal, and lateral temporal cortices and determine whether there is evidence of a hierarchical organization based on the representation of goals at different temporal scales. Findings from recent functional neuroimaging studies suggest that: (1) the anterior frontoparietal network is involved in generating and planning for distal goals, (2) the posterior frontoparietal is involved in realizing proximal goals by representing desired outcomes and currently relevant rules for action, and (3) the sensorimotor network translates such rules into the execution of motor output. These findings are consistent with the idea that goal-directed behavior can be deconstructed into a temporal hierarchy of goals and corresponding brain networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrews-Hanna JR, Reidler JS, Sepulcre J, Poulin R, Buckner RL (2010) Functional-anatomic fractionation of the brain’s default network. Neuron 65(4):550–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrews-Hanna JR (2012) The brain’s default network and its adaptive role in internal mentation. Neuroscientist 18(3):251–270

    Google Scholar 

  • Aron AR, Robbins TW, Poldrack RA (2004) Inhibition and the right inferior frontal cortex. Trends Cogn Sci 8(4):170–177

    Article  PubMed  Google Scholar 

  • Badre D, D’Esposito M (2007) Functional magnetic resonance imaging evidence for a hierarchical organization of the prefrontal cortex. J Cogn Neurosci 19(12):2082–2099

    Article  PubMed  Google Scholar 

  • Badre D, D’Esposito M (2009a) Is the rostro-caudal axis of the frontal lobe hierarchical? Nat Rev Neurosci 10(9):659–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badre D, D’Esposito M (2009b) Is the rostro-caudal axis of the frontal lobe hierarchical? Nat Rev Neurosci 10(9):659–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badre D, Doll BB, Long NM, Frank MJ (2012) Rostrolateral prefrontal cortex and individual differences in uncertainty-driven exploration. Neuron 73(3):595–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bahlmann J, Aarts E, D’Esposito M (2015) Influence of motivation on control hierarchy in the human frontal cortex. J Neurosci 35(7):3207–3217

    Article  CAS  PubMed  Google Scholar 

  • Baird B, Smallwood J, Gorgolewski KJ, Margulies DS (2013) Medial and lateral networks in anterior prefrontal cortex support metacognitive ability for memory and perception. J Neurosci 33(42):16657–16665

    Article  CAS  PubMed  Google Scholar 

  • Beck SM, Locke HS, Savine AC, Jimura K, Braver TS (2010) Primary and secondary rewards differentially modulate neural activity dynamics during working memory. PLoS One 5(2):e9251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4):537–541

    Article  CAS  PubMed  Google Scholar 

  • Boorman ED, Behrens TE, Woolrich MW, Rushworth MF (2009) How green is the grass on the other side? Frontopolar cortex and the evidence in favor of alternative courses of action. Neuron 62(5):733–743

    Article  CAS  PubMed  Google Scholar 

  • Botvinick M, Braver T (2015) Motivation and cognitive control: from behavior to neural mechanism. Annu Rev Psychol 66:83–113

    Article  PubMed  Google Scholar 

  • Braver TS, Bongiolatti SR (2002) The role of frontopolar cortex in subgoal processing during working memory. NeuroImage 15(3):523–536

    Article  PubMed  Google Scholar 

  • Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38

    Article  PubMed  Google Scholar 

  • Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T et al (2009) Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J Neurosci 29(6):1860–1873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bunge SA (2004) How we use rules to select actions: a review of evidence from cognitive neuroscience. Cogn Affect Behav Neurosci 4(4):564–579

    Article  PubMed  Google Scholar 

  • Bunge SA, Zelazo PD (2006) A brain-based account of the development of rule use in childhood. Curr Dir Psychol Sci 15(3):118–121

    Article  Google Scholar 

  • Bunge SA, Kahn I, Wallis JD, Miller EK, Wagner AD (2003) Neural circuits subserving the retrieval and maintenance of abstract rules. J Neurophysiol 90(5):3419–3428

    Article  PubMed  Google Scholar 

  • Bunge SA, Wendelken C, Badre D, Wagner AD (2005) Analogical reasoning and prefrontal cortex: evidence for separable retrieval and integration mechanisms. Cereb Cortex 15(3):239–249

    Article  PubMed  Google Scholar 

  • Burgess PW, Dumontheil I, Gilbert SJ (2007) The gateway hypothesis of rostral prefrontal cortex (area 10) function. Trends Cogn Sci 11(7):290–298

    Article  PubMed  Google Scholar 

  • Christoff K, Gabrieli JDE (2000) The frontopolar cortex and human cognition: evidence for a rostrocaudal hierarchical organization within the human prefrontal cortex. Psychobiology 28(2):168–186

    Google Scholar 

  • Christoff K, Prabhakaran V, Dorfman J, Zhao Z, Kroger JK, Holyoak KJ et al (2001) Rostrolateral prefrontal cortex involvement in relational integration during reasoning. NeuroImage 14(5):1136–1149

    Article  CAS  PubMed  Google Scholar 

  • Christoff K, Ream JM, Gabrieli JD (2004a) Neural basis of spontaneous thought processes. Cortex; J Devoted Study Nerv Syst Behav 40(4–5):623–630

    Article  Google Scholar 

  • Christoff K, Ream JM, Gabrieli JD (2004b) Neural basis of spontaneous thought processes. Cortex 40(4–5):623–630

    Article  PubMed  Google Scholar 

  • Christoff K, Gordon AM, Smallwood J, Smith R, Schooler JW (2009a) Experience sampling during fMRI reveals default network and executive system contributions to mind wandering. Proc Natl Acad Sci U S A 106(21):8719–8724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christoff K, Gordon AM, Smallwood J, Smith R, Schooler JW (2009b) Experience sampling during fMRI reveals default network and executive system contributions to mind wandering. Proc Natl Acad Sci U S A 106(21):8719–8724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christoff K, Keramatian K, Gordon AM, Smith R, Madler B (2009c) Prefrontal organization of cognitive control according to levels of abstraction. Brain Res 1286:94–105

    Article  CAS  PubMed  Google Scholar 

  • Christoff K, Keramatian K, Gordon AM, Smith R, Madler B (2009d) Prefrontal organization of cognitive control according to levels of abstraction. Brain Res 1286:94–105

    Article  CAS  PubMed  Google Scholar 

  • Christoff K, Cosmelli D, Legrand D, Thompson E (2011) Specifying the self for cognitive neuroscience. Trends Cogn Sci 15(3):104–112

    Article  PubMed  Google Scholar 

  • Cole MW, Schneider W (2007) The cognitive control network: integrated cortical regions with dissociable functions. NeuroImage 37(1):343–360

    Article  PubMed  Google Scholar 

  • Crockett MJ, Braams BR, Clark L, Tobler PN, Robbins TW, Kalenscher T (2013) Restricting temptations: neural mechanisms of precommitment. Neuron 79(2):391–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damoiseaux J, Rombouts S, Barkhof F, Scheltens P, Stam C, Smith SM et al (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci 103(37):13848–13853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Baene W, Kuhn S, Brass M (2012) Challenging a decade of brain research on task switching: brain activation in the task-switching paradigm reflects adaptation rather than reconfiguration of task sets. Hum Brain Mapp 33(3):639–651

    Article  PubMed  Google Scholar 

  • De Luca M, Smith S, De Stefano N, Federico A, Matthews PM (2005) Blood oxygenation level dependent contrast resting state networks are relevant to functional activity in the neocortical sensorimotor system. Exp Brain Res 167(4):587–594

    Article  PubMed  Google Scholar 

  • De Martino B, Fleming SM, Garrett N, Dolan RJ (2013) Confidence in value-based choice. Nat Neurosci 16(1):105–110

    Article  CAS  PubMed  Google Scholar 

  • Diekhof EK, Gruber O (2010) When desire collides with reason: functional interactions between anteroventral prefrontal cortex and nucleus accumbens underlie the human ability to resist impulsive desires. J Neurosci 30(4):1488–1493

    Article  CAS  PubMed  Google Scholar 

  • Dixon ML (2015) Cognitive control, emotional value, and the lateral prefrontal cortex. Front Psychol 6:758

    Article  PubMed  PubMed Central  Google Scholar 

  • Dixon ML, Christoff K (2012) The decision to engage cognitive control is driven by expected reward-value: neural and behavioral evidence. PLoS One 7(12):1–12

    Article  CAS  Google Scholar 

  • Dixon ML, Christoff K (2014) The lateral prefrontal cortex and complex value-based learning and decision making. Neurosci Biobehav Rev 45:9

    Article  PubMed  Google Scholar 

  • Dixon ML, Fox KCR, Christoff K (2014a) Evidence for rostro-caudal functional organization in multiple brain areas related to goal-directed behavior. Brain Research 1572:26

    Article  CAS  PubMed  Google Scholar 

  • Dixon ML, Fox KCR, Christoff K (2014b) A framework for understanding the relationship between externally and internally directed cognition. Neuropsychologia 62:321–330

    Article  PubMed  Google Scholar 

  • Dixon ML, Andrews-Hanna JR, Spreng RN, Irving Z, Mills C, Girn M, Christoff K (2017) Interactions between the default network and dorsal attention network vary across default subsystems, time, and cognitive states. Neuroimage 147:632–649

    Google Scholar 

  • Dosenbach NU, Visscher KM, Palmer ED, Miezin FM, Wenger KK, Kang HC et al (2006) A core system for the implementation of task sets. Neuron 50(5):799–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dosenbach NU, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RA et al (2007) Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci U S A 104(26):11073–11078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dreher JC, Koechlin E, Tierney M, Grafman J (2008) Damage to the fronto-polar cortex is associated with impaired multitasking. PLoS One 3(9):e3227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duncan J (2001) An adaptive coding model of neural function in prefrontal cortex. Nat Rev Neurosci 2(11):820–829

    Article  CAS  PubMed  Google Scholar 

  • Duncan J (2010) The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. Trends Cogn Sci 14(4):172–179

    Article  PubMed  Google Scholar 

  • Etzel JA, Cole MW, Zacks JM, Kay KN, Braver TS (2015) Reward motivation enhances task coding in frontoparietal cortex. Cereb Cortex 26:1647

    Article  PubMed  Google Scholar 

  • Fair DA, Cohen AL, Dosenbach NU, Church JA, Miezin FM, Barch DM et al (2008) The maturing architecture of the brain’s default network. Proc Natl Acad Sci U S A 105(10):4028–4032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrier D (1873) The localization of function in the brain. Proc R Soc Lond 22(148–155):228–232

    Article  Google Scholar 

  • Fleming SM, Weil RS, Nagy Z, Dolan RJ, Rees G (2010) Relating introspective accuracy to individual differences in brain structure. Science 329(5998):1541–1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fletcher PC, Henson RN (2001) Frontal lobes and human memory: insights from functional neuroimaging. Brain 124(Pt 5):849–881

    Article  CAS  PubMed  Google Scholar 

  • Fox M, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8(9):700–711

    Article  CAS  PubMed  Google Scholar 

  • Fox M, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 102(27):9673–9678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox M, Corbetta M, Snyder AZ, Vincent JL, Raichle ME (2006) Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci U S A 103(26):10046–10051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox KCR, Nijeboer S, Solomonova E, Domhoff GW, Christoff K (2013) Dreaming as mind wandering: evidence from functional neuroimaging and first-person content reports. Front Hum Neurosci 7(412):1–18

    Google Scholar 

  • Fox KC, Spreng RN, Ellamil M, Andrews-Hanna JR, Christoff K (2015) The wandering brain: meta-analysis of functional neuroimaging studies of mind-wandering and related spontaneous thought processes. Neuroimage 111:611

    Article  PubMed  Google Scholar 

  • Gao W, Lin W (2012) Frontal parietal control network regulates the anti-correlated default and dorsal attention networks. Hum Brain Mapp 33(1):192–202

    Article  PubMed  Google Scholar 

  • Gerlach KD, Spreng RN, Madore KP, Schacter DL (2014) Future planning: default network activity couples with frontoparietal control network and reward-processing regions during process and outcome simulations. Soc Cogn Affect Neurosci 9:1942

    Article  PubMed  PubMed Central  Google Scholar 

  • Grafton ST, Woods RP, Mazziotta JC, Phelps ME (1991) Somatotopic mapping of the primary motor cortex in humans: activation studies with cerebral blood flow and positron emission tomography. J Neurophysiol 66(3):735–743

    CAS  PubMed  Google Scholar 

  • Graziano M (2006) The organization of behavioral repertoire in motor cortex. Annu Rev Neurosci 29:105–134

    Article  CAS  PubMed  Google Scholar 

  • Graziano M (2016) Ethological action maps: a paradigm shift for the motor cortex. Trends Cogn Sci 20(2):121–132

    Article  PubMed  Google Scholar 

  • Graziano M, Taylor CS, Moore T (2002) Complex movements evoked by microstimulation of precentral cortex. Neuron 34(5):841–851

    Article  CAS  PubMed  Google Scholar 

  • Greene JD, Nystrom LE, Engell AD, Darley JM, Cohen JD (2004) The neural bases of cognitive conflict and control in moral judgment. Neuron 44(2):389–400

    Article  CAS  PubMed  Google Scholar 

  • Greicius M, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A 100(1):253–258

    Article  CAS  PubMed  Google Scholar 

  • Gusnard DA, Raichle ME (2001) Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2(10):685–694

    Article  CAS  PubMed  Google Scholar 

  • Histed MH, Pasupathy A, Miller EK (2009) Learning substrates in the primate prefrontal cortex and striatum: sustained activity related to successful actions. Neuron 63(2):244–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli R et al (2009) Predicting human resting-state functional connectivity from structural connectivity. Proc Natl Acad Sci U S A 106(6):2035–2040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jimura K, Locke HS, Braver TS (2010) Prefrontal cortex mediation of cognitive enhancement in rewarding motivational contexts. Proc Natl Acad Sci U S A 107(19):8871–8876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jimura K, Chushak MS, Braver TS (2013) Impulsivity and self-control during intertemporal decision making linked to the neural dynamics of reward value representation. J Neurosci 33(1):344–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klinger E (2008) 15 Daydreaming and fantasizing: thought flow and motivation In Markman KD, Klein WMP, Suh JA (eds) Handbook of imagination and mental simulation

    Google Scholar 

  • Kobayashi S, Nomoto K, Watanabe M, Hikosaka O, Schultz W, Sakagami M (2006) Influences of rewarding and aversive outcomes on activity in macaque lateral prefrontal cortex. Neuron 51(6):861–870

    Article  CAS  PubMed  Google Scholar 

  • Koechlin E, Basso G, Pietrini P, Panzer S, Grafman J (1999) The role of the anterior prefrontal cortex in human cognition. Nature 399(6732):148–151

    Article  CAS  PubMed  Google Scholar 

  • Koechlin E, Ody C, Kouneiher F (2003) The architecture of cognitive control in the human prefrontal cortex. Science 302(5648):1181–1185

    Article  CAS  PubMed  Google Scholar 

  • Kouneiher F, Charron S, Koechlin E (2009) Motivation and cognitive control in the human prefrontal cortex. Nat Neurosci 12(7):939–945

    Article  CAS  PubMed  Google Scholar 

  • Kroger JK, Sabb FW, Fales CL, Bookheimer SY, Cohen MS, Holyoak KJ (2002) Recruitment of anterior dorsolateral prefrontal cortex in human reasoning: a parametric study of relational complexity. Cereb Cortex 12(5):477–485

    Article  PubMed  Google Scholar 

  • Mar RA, Mason MF, Litvack AD (2012) How daydreaming relates to life satisfaction, loneliness, and social support: the importance of gender and daydream content. Conscious Cogn 21:401–407

    Google Scholar 

  • Margulies DS, Vincent JL, Kelly C, Lohmann G, Uddin LQ, Biswal BB et al (2009) Precuneus shares intrinsic functional architecture in humans and monkeys. Proc Natl Acad Sci U S A 106(47):20069–20074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazoyer B, Zago L, Mellet E, Bricogne S, Etard O, Houde O et al (2001) Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Res Bull 54(3):287–298

    Article  CAS  PubMed  Google Scholar 

  • McCaig RG, Dixon M, Keramatian K, Liu I, Christoff K (2011) Improved modulation of rostrolateral prefrontal cortex using real-time fMRI training and meta-cognitive awareness. NeuroImage 55(3):1298–1305

    Article  PubMed  Google Scholar 

  • McClure SM, Laibson DI, Loewenstein G, Cohen JD (2004) Separate neural systems value immediate and delayed monetary rewards. Science 306(5695):503–507

    Article  CAS  PubMed  Google Scholar 

  • McCurdy LY, Maniscalco B, Metcalfe J, Liu KY, de Lange FP, Lau H (2013) Anatomical coupling between distinct metacognitive systems for memory and visual perception. J Neurosci 33(5):1897–1906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGuire JT, Botvinick MM (2010) Prefrontal cortex, cognitive control, and the registration of decision costs. Proc Natl Acad Sci U S A 107(17):7922–7926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202

    Article  CAS  PubMed  Google Scholar 

  • Monti MM, Osherson DN, Martinez MJ, Parsons LM (2007) Functional neuroanatomy of deductive inference: a language-independent distributed network. NeuroImage 37(3):1005–1016

    Article  PubMed  Google Scholar 

  • Muakkassa KF, Strick PL (1979) Frontal lobe inputs to primate motor cortex: evidence for four somatotopically organized ‘premotor’ areas. Brain Res 177(1):176–182

    Article  CAS  PubMed  Google Scholar 

  • Padmala S, Pessoa L (2011) Reward reduces conflict by enhancing attentional control and biasing visual cortical processing. J Cogn Neurosci 23(11):3419–3432

    Article  PubMed  PubMed Central  Google Scholar 

  • Penfield W, Boldrey E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60(4):389–443

    Article  Google Scholar 

  • Petrides M (2005) Lateral prefrontal cortex: architectonic and functional organization. Philos Trans R Soc Lond Ser B Biol Sci 360(1456):781–795

    Article  Google Scholar 

  • Picard N, Strick PL (1996) Motor areas of the medial wall: a review of their location and functional activation. Cereb Cortex 6(3):342–353

    Article  CAS  PubMed  Google Scholar 

  • Pochon JB, Levy R, Fossati P, Lehericy S, Poline JB, Pillon B et al (2002) The neural system that bridges reward and cognition in humans: an fMRI study. Proc Natl Acad Sci U S A 99(8):5669–5674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Power JD, Cohen AL, Nelson SM, Wig GS, Barnes KA, Church JA et al (2011) Functional network organization of the human brain. Neuron 72(4):665–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raichle ME (2009) A paradigm shift in functional brain imaging. J Neurosci 29(41):12729–12734

    Article  CAS  PubMed  Google Scholar 

  • Ramnani N, Owen AM (2004a) Anterior prefrontal cortex: insights into function from anatomy and neuroimaging. Nat Rev Neurosci 5(3):184–194

    Article  CAS  PubMed  Google Scholar 

  • Ramnani N, Owen AM (2004b) Anterior prefrontal cortex: insights into function from anatomy and neuroimaging. Nat Rev Neurosci 5(3):184–194

    Article  CAS  PubMed  Google Scholar 

  • Rizzolatti G, Luppino G (2001) The cortical motor system. Neuron 31(6):889–901

    Article  CAS  PubMed  Google Scholar 

  • Rizzolatti G, Camarda R, Fogassi L, Gentilucci M, Luppino G, Matelli M (1988) Functional organization of inferior area 6 in the macaque monkey. Exp Brain Res 71(3):491–507

    Article  CAS  PubMed  Google Scholar 

  • Rizzolatti G, Fogassi L, Gallese V (2002) Motor and cognitive functions of the ventral premotor cortex. Curr Opin Neurobiol 12(2):149–154

    Article  CAS  PubMed  Google Scholar 

  • Rugg MD, Wilding EL (2000) Retrieval processing and episodic memory. Trends Cogn Sci 4(3):108–115

    Article  CAS  PubMed  Google Scholar 

  • Rushworth MF, Behrens TE, Rudebeck PH, Walton ME (2007) Contrasting roles for cingulate and orbitofrontal cortex in decisions and social behaviour. Trends Cogn Sci 11(4):168–176

    Article  CAS  PubMed  Google Scholar 

  • Shulman GL, Fiez JA, Corbetta M, Buckner RL, Miezin FM, Raichle ME et al (1997) Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. J Cogn Neurosci 9(5):648–663

    Article  CAS  PubMed  Google Scholar 

  • Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE et al (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci U S A 106(31):13040–13045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SM, Vidaurre D, Beckmann CF, Glasser MF, Jenkinson M, Miller KL et al (2013) Functional connectomics from resting-state fMRI. Trends Cogn Sci 17(12):666–682

    Article  PubMed  PubMed Central  Google Scholar 

  • Spreng RN, Stevens WD, Chamberlain JP, Gilmore AW, Schacter DL (2010) Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition. NeuroImage 53(1):303–317

    Article  PubMed  PubMed Central  Google Scholar 

  • Spreng RN, Sepulcre J, Turner GR, Stevens WD, Schacter DL (2013) Intrinsic architecture underlying the relations among the default, dorsal attention, and frontoparietal control networks of the human brain. J Cogn Neurosci 25(1):74–86

    Article  PubMed  Google Scholar 

  • Tsujimoto S, Genovesio A, Wise SP (2010) Evaluating self-generated decisions in frontal pole cortex of monkeys. Nat Neurosci 13(1):120–126

    Article  CAS  PubMed  Google Scholar 

  • van den Bos W, Rodriguez CA, Schweitzer JB, McClure SM (2014) Connectivity strength of dissociable striatal tracts predict individual differences in temporal discounting. J Neurosci 34(31):10298–10310

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van den Heuvel MP, Hulshoff Pol HE (2010) Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol 20(8):519–534

    Article  PubMed  CAS  Google Scholar 

  • Van Dijk KR, Hedden T, Venkataraman A, Evans KC, Lazar SW, Buckner RL (2010) Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. J Neurophysiol 103(1):297–321

    Article  PubMed  Google Scholar 

  • Velanova K, Jacoby LL, Wheeler ME, McAvoy MP, Petersen SE, Buckner RL (2003) Functional-anatomic correlates of sustained and transient processing components engaged during controlled retrieval. J Neurosci 23(24):8460–8470

    CAS  PubMed  Google Scholar 

  • Vincent JL, Patel GH, Fox MD, Snyder AZ, Baker JT, Van Essen DC et al (2007) Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447(7140):83–86

    Article  CAS  PubMed  Google Scholar 

  • Vincent JL, Kahn I, Snyder AZ, Raichle ME, Buckner RL (2008) Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. J Neurophysiol 100(6):3328–3342

    Article  PubMed  PubMed Central  Google Scholar 

  • Watanabe M (1996) Reward expectancy in primate prefrontal neurons. Nature 382(6592):629–632

    Article  CAS  PubMed  Google Scholar 

  • Xiong J, Parsons LM, Gao JH, Fox PT (1999) Interregional connectivity to primary motor cortex revealed using MRI resting state images. Hum Brain Mapp 8(2–3):151–156

    Article  CAS  PubMed  Google Scholar 

  • Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M et al (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 106(3):1125–1165

    Article  PubMed  Google Scholar 

  • Zuo X-N, Kelly C, Adelstein JS, Klein DF, Castellanos FX, Milham MP (2010) Reliable intrinsic connectivity networks: test–retest evaluation using ICA and dual regression approach. NeuroImage 49(3):2163–2177

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mathew L. Dixon or Kalina Christoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Dixon, M.L., Girn, M., Christoff, K. (2017). Hierarchical Organization of Frontoparietal Control Networks Underlying Goal-Directed Behavior. In: Watanabe, M. (eds) The Prefrontal Cortex as an Executive, Emotional, and Social Brain. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56508-6_7

Download citation

Publish with us

Policies and ethics