Skip to main content

Plasticity in the Cricket Central Nervous System

  • Chapter
  • First Online:

Abstract

The auditory system of the cricket shows a remarkable level of anatomical plasticity in response to injury. Removal of the auditory organ deafferents several types of auditory neurons of the central nervous system. These neurons respond to the loss of input by sending dendrites across the midline, a boundary they typically respect, and forming synapses with the auditory afferents of the contralateral ear. This compensatory growth and synapse formation reinstates neuron-specific frequency tuning curves. Growth and branching after deafferentation are sexually dimorphic, with male growth rates being linear and female growth rates being nonlinear. Female dendrites stop growing and branching after only a few days, while male dendrites continue to grow steadily, becoming twice as long as females by 20 days after deafferentation. Exploration of the molecular basis of this compensatory plasticity has revealed a number of possible candidates, including semaphorins and a VAMP family member, neuronal synaptobrevin.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bingol B, Schuman EM (2005) Synaptic protein degradation by the ubiquitin proteasome system. Curr Opin Neurobiol 15:536–541

    Article  CAS  PubMed  Google Scholar 

  • Born D, Rubel E (1985) Afferent influences on brain stem auditory nuclei of the chicken: neuron number and size following cochlea removal. J Comp Neurol 231:435–445

    Article  CAS  PubMed  Google Scholar 

  • Bowen MF, Bollenbacher WE, Gilbert LI (1984) In vitro studies on the role of the brain and prothoracic glands in the pupal diapause of Manduca Sexta. J Exp Biol 108:9–24

    CAS  Google Scholar 

  • Brodfuehrer PD, Hoy RR (1988) Effect of auditory deafferentation on the synaptic connectivity of a pair of identified interneurons in adult field crickets. J Neurobiol 19:17–38

    Article  CAS  PubMed  Google Scholar 

  • Buschges A, Ramirez JM, Pearson KG (1992) Reorganization of sensory regulation of locust flight after partial deafferentation. J Neurobiol 23:31–43

    Article  CAS  PubMed  Google Scholar 

  • Campbell D, Holt C (2001) Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis. Neuron 32:1013–1026

    Article  CAS  PubMed  Google Scholar 

  • Cayre M, Strambi C, Strambi A, Charpin P, Ternaux JP (2000) Dual effect of ecdysone on adult cricket mushroom bodies. Eur J Neurosci 12:633–642

    Article  CAS  PubMed  Google Scholar 

  • Cooke BM, Woolley CS (2005) Gonadal hormone modulation of dendrites in the mammalian CNS. J Neurobiol 64:34–46

    Article  CAS  PubMed  Google Scholar 

  • De Winter F, Oudega M, Lankhorst A, Hamers F, Blits B, Ruitenberg M, Pasterkamp R, Gispen W, Verhaagen J (2002) Injury-induced class 3 semaphorin expression in the rat spinal cord. Exp Neurol 175:61–75

    Article  PubMed  Google Scholar 

  • DeVoogd T, Nottebohm F (1981) Gonadal hormones induce dendritic growth in the adult avian brain. Science 214:202–204

    Article  CAS  PubMed  Google Scholar 

  • Devor M (1975) Neuroplasticity in the rearrangement of olfactory tract fibers after neonatal transection in hamster. J Comp Neurol 166:49–72

    Article  Google Scholar 

  • Diatchenko L, Lau Y, Campbell A, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov E, Siebert P (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci U S A 93:6025–6030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Easter S, Purves D, Rakic P, Spitzer N (1985) The changing view of neural specificity. Science 230:507–511

    Article  PubMed  Google Scholar 

  • Emoto K, He Y, Ye B, Grueber WB, Adler PN, Jan LY, Jan YN (2004) Control of dendritic branching and tiling by the Tricornered-kinase/Furry signaling pathway in Drosophila sensory neurons. Cell 119:245–256

    Article  CAS  PubMed  Google Scholar 

  • Fenstermaker V, Chen Y, Ghosh A, Yuste R (2004) Regulation of dendritic length and branching by semaphorin 3A. J Neurobiol 58:403–412

    Article  CAS  PubMed  Google Scholar 

  • Ferguson K, Long H, Cameron S, Chang W-T, Rao Y (2009) The conserved Ig superfamily member Turtle mediates axonal tiling in Drosophila. J Neurosci 29:14151–14159

    Article  CAS  PubMed  Google Scholar 

  • Genikhovich G, Kurn U, Hemmrich G, Bosch T (2006) Discovery of genes expressed in Hydra embryogenesis. Dev Biol 289:466–481

    Article  CAS  PubMed  Google Scholar 

  • Gontheir B, Koncina E, Satkauskas S, Perraut M, Roussel G, Aunis D, Kapfhammer J, Bagnard D (2009) A PKC-dependent recruitment of MMP-2 controls semaphorin-3A growth-promoting effect in cortical dendrites. PLoS ONE 4, e5099

    Article  Google Scholar 

  • Groh C, Meinertzhagen IA (2010) Brain plasticity in Diptera and Hymenoptera. Front Biosci (Scholar Ed) 2:268

    Google Scholar 

  • Grueber WB, Graubard K, Truman JW (2001) Tiling of the body wall by multidendritic sensory neurons in Manduca sexta. J Comp Neurol 440:271–283

    Article  CAS  PubMed  Google Scholar 

  • Grueber WB, Jan LY, Jan YN (2002) Tiling of the Drosophila epidermis by multidendritic sensory neurons. Development 129:2867–2878

    CAS  PubMed  Google Scholar 

  • Hall GF, Cohen MJ (1988) The pattern of dendritic sprouting and retraction induced by axotomy of lamprey central neurons. J Neurosci 8:3584–3597

    CAS  PubMed  Google Scholar 

  • Harel NY, Strittmatter SM (2006) Can regenerating axons recapitulate developmental guidance during recovery from spinal cord injury? Nat Rev Neurosci 7:603–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hegde AN, DiAntonio A (2002) Ubiquitin and the synapse. Nat Rev Neurosci 3:854–861

    Article  CAS  PubMed  Google Scholar 

  • Hickmott PW, Steen PA (2005) Large-scale changes in dendritic structure during reorganization of adult somatosensory cortex. Nat Neurosci 8:140–142

    Article  CAS  PubMed  Google Scholar 

  • Horch HW, McCarthy SS, Johansen SL, Harris JM (2009) Differential gene expression during compensatory sprouting of dendrites in the auditory system of the cricket Gryllus bimaculatus. Insect Mol Biol 18:483–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horch HW, Sheldon E, Cutting CC, Williams CR, Riker DM, Peckler HR, Sangal RB (2011) Bilateral consequences of chronic unilateral deafferentation in the auditory system of the cricket gryllus bimaculatus. Dev Neurosci 33:21–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoy RR, Nolen TG, Casaday GC (1985) Dendritic sprouting and compensatory synaptogenesis in an identified interneuron following auditory deprivation in a cricket. Proc Natl Acad Sci U S A 82:7772–7776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ing B, Shteiman-Kotler A, Castelli M, Henry P, Pak Y, Stewart B, Boulianne G, Rotin D (2007) Regulation of commissureless by the ubiquitin ligase DNedd4 is required for neuromuscular synaptogenesis in Drosophila melanogaster. Mol Cell Biol 27:481–496

    Article  CAS  PubMed  Google Scholar 

  • Jacobsson G, Piehl F, Meister B (1998) VAMP‐1 and VAMP‐2 gene expression in rat spinal motoneurones: differential regulation after neuronal injury. Eur J Neurosci 10:301–316

    Article  CAS  PubMed  Google Scholar 

  • Jan YN, Jan L (2003) The control of dendrite development. Neuron 40:229–242

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Chiba A (2004) Dendritic guidance. Trends Neurosci 27:194–202

    Article  CAS  PubMed  Google Scholar 

  • Kraft R, Levine RB, Restifo LL (1998) The steroid hormone 20-hydroxyecdysone enhances neurite growth of Drosophila mushroom body neurons isolated during metamorphosis. J Neurosci 18:8886–8899

    CAS  PubMed  Google Scholar 

  • Lakes R, Kalmring K, Engelhard KH (1990) Changes in the auditory system of locusts (Locusta migratoria and Schistocerca gregaria) after deafferentation. J Comp Physiol A 166:553–563

    Article  Google Scholar 

  • Liang P, Pardee AB (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257:967–971

    Article  CAS  PubMed  Google Scholar 

  • Lomax M, Huang L, Cho Y, Gong T-W, Altschuler R (2000) Differential display and gene arrays to examine auditory plasticity. Hear Res 147:293–302

    Article  CAS  PubMed  Google Scholar 

  • Luo L (2000) Rho GTPases in neuronal morphogenesis. Nat Rev Neurosci 1:173–180

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Arca S, Alberts P, Zahraoui A, Louvard D (2000) Role of tetanus neurotoxin insensitive vesicle-associated membrane protein (TI-VAMP) in vesicular transport mediating neurite outgrowth. J Cell Biol 149:889–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matheson SF, Levine RB (1999) Steroid hormone enhancement of neurite outgrowth in identified insect motor neurons involves specific effects on growth cone form and function. J Neurobiol 38:27–45

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto Y (2004) Context-dependent olfactory learning in an insect. Learn Mem 11:288–293

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsumoto Y, Mizunami M (2000) Olfactory learning in the cricket Gryllus bimaculatus. J Exp Biol 203:2581–2588

    CAS  PubMed  Google Scholar 

  • Matsumoto Y, Mizunami M (2002) Lifetime olfactory memory in the cricket Gryllus bimaculatus. J Comp Physiol A 188:295–299

    Article  CAS  Google Scholar 

  • Matsumoto Y, Noji S, Mizunami M (2003) Time course of protein synthesis-dependent phase of olfactory memory in the cricket Gryllus bimaculatus. Zool Sci 20:409–416

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto Y, Unoki S, Aonuma H, Mizunami M (2006) Critical role of nitric oxide-cGMP cascade in the formation of cAMP-dependent long-term memory. Learn Mem 13:35–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maynard KR, McCarthy SS, Sheldon E, Horch HW (2007) Developmental and adult expression of semaphorin 2a in the cricket Gryllus bimaculatus. J Comp Neurol 503:169–181

    Article  CAS  PubMed  Google Scholar 

  • McLean M, Edwards JS (1976) Target discrimination in regenerating insect sensory nerve. J Embryol Exp Morphol:36:19–39

    Google Scholar 

  • Meinertzhagen IA (2001) Plasticity in the insect nervous system. In: Evans PD (ed) Advances in insect physiology, vol 28. Academic, New York, pp 84–167

    Google Scholar 

  • Miele G, MacRae L, McBride D, Manson J, Clinton M (1998) Elimination of false positives generated through PCR re-amplification of differential display cDNA. BioTechniques 25:138–144

    CAS  PubMed  Google Scholar 

  • Morita A (2006) Regulation of dendritic branching and spine maturation by semaphorin3A-Fyn signaling. J Neurosci 26:2971–2980

    Article  CAS  PubMed  Google Scholar 

  • Murphey RK (1986) The myth of the inflexible invertebrate: competition and synaptic remodelling in the development of invertebrate nervous systems. J Neurobiol 17:585–591

    Article  CAS  PubMed  Google Scholar 

  • Murphey RK, Mendenhall B, Palka J, Edwards JS (1975) Deafferentation slows the growth of specific dendrites of identified giant interneurons. J Comp Neurol 159:407–418

    Article  CAS  PubMed  Google Scholar 

  • Murphey RK, Johnson SE, Walthall WW (1981) The effects of transplantation and regeneration of sensory neurons on a somatotopic map in the cricket central nervous system. Dev Biol 88:247–258

    Article  CAS  PubMed  Google Scholar 

  • Murphey RK, Bacon JP, Sakaguchi DS, Johnson SE (1983a) Transplantation of cricket sensory neurons to ectopic locations: arborizations and synaptic connections. J Neurosci 3:659–672

    Google Scholar 

  • Murphey RK, Johnson SE, Sakaguchi DS (1983b) Anatomy and physiology of supernumerary cercal afferents in crickets: implications for pattern formation. J Neurosci 3:312–325

    CAS  PubMed  Google Scholar 

  • Myat A, Henry P, McCabe V, Flintoft L, Rotin D, Tear G (2002) Drosophila Nedd4, a ubiquitin ligase, is recruited by commissureless to control cell surface levels of the roundabout receptor. Neuron 35:447–459

    Article  CAS  PubMed  Google Scholar 

  • Nakamura F, Ugahin K, Yamashita N, Okada T, Uchida Y, Taniguchi M, Ohshima T, Goshima Y (2009) Increased proximal bifurcation of CA1 pyramidal apical dendrites in sema3A mutant mice. J Comp Neurol 516:360–375

    Article  PubMed  Google Scholar 

  • Nordeen KW, Killackey HP, Kitzes LM (1983) Ascending projections to the inferior colliculus following unilateral cochlear ablation in the neonatal gerbil, Meriones unguiculatus. J Comp Neurol 214:144–153

    Article  CAS  PubMed  Google Scholar 

  • Palka J (1984) Precision and plasticity in the insect nervous system. Trends Neurosci 7:455–456

    Article  Google Scholar 

  • Palka J, Edwards JS (1974) The cerci and abdominal giant fibres of the house cricket, Acheta domesticus. II. Regeneration and effects of chronic deprivation. Proc R Soc B Biol Sci 185:105–121

    Article  CAS  Google Scholar 

  • Pallas SL, Hoy RR (1986) Regeneration of normal afferent input does not eliminate aberrant synaptic connections of an identified auditory interneuron in the cricket, Teleogryllus oceanicus. J Comp Neurol 248:348–359

    Article  CAS  PubMed  Google Scholar 

  • Parks T (1979) Afferent influences on the development of the brain stem auditory nuclei of the chicken: otocyst ablation. J Comp Neurol 183:665–678

    Article  CAS  PubMed  Google Scholar 

  • Pasterkamp RJ, Giger RJ (2009) Semaphorin function in neural plasticity and disease. Curr Opin Neurobiol 19:263–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfister A, Johnson A, Ellers O, Horch HW (2013) Quantification of dendritic and axonal growth after injury to the auditory system of the adult cricket Gryllus bimaculatus. Front Physiol 3:367

    Article  PubMed  PubMed Central  Google Scholar 

  • Polleux F, Morrow T, Ghosh A (2000) Semaphorin 3A is a chemoattractant for cortical apical dendrites. Nature 404:567–573

    Article  CAS  PubMed  Google Scholar 

  • Prugh J, Croce Della K, Levine RB (1992) Effects of the steroid hormone, 20-hydroxyecdysone, on the growth of neurites by identified insect motoneurons in vitro. Dev Biol 154:331–347

    Article  CAS  PubMed  Google Scholar 

  • Purves D (1976) Competitive and non-competitive re-innervation of mammalian sympathetic neurones by native and foreign fibres. J Physiol 261:453–475

    Google Scholar 

  • Purves D, Hume RI (1981) The relation of postsynaptic geometry to the number of presynaptic axons that innervate autonomic ganglion cells. J Neurosci 1:441–452

    CAS  PubMed  Google Scholar 

  • Raghuram H, Deb R, Nandi D, Balakrishnan R (2015) Silent katydid females are at higher risk of bat predation than acoustically signalling katydid males. Proc R Soc B Biol Sci 282:20142319

    Article  Google Scholar 

  • Roederer E, Cohen MJ (1983) Regeneration of an identified central neuron in the cricket. J Neurosci 3:1835–1847

    CAS  PubMed  Google Scholar 

  • Sanes JR, Lichtman JW (1999) Development of the vertebrate neuromuscular junction. Annu Rev Neurosci 22:389–442

    Article  CAS  PubMed  Google Scholar 

  • Schildberger K, Wohlers DW, Schmitz B, Kleindienst HU, Huber F (1986) Morphological and physiological changes in central auditory neurons following unilateral foreleg amputation in larval crickets. J Comp Physiol A 158:291–300

    Article  Google Scholar 

  • Schmitz B (1989) Neuroplasticity and phonotaxis in monaural adult female crickets (Gryllus bimaculatus de Geer). J Comp Physiol A: Neuroethol 164:343–358

    Article  Google Scholar 

  • Schmitz B, Kleindienst HU, Schildberger K, Huber F (1988) Acoustic orientation in adult, female crickets (Gryllus- Bimaculatus Degeer) after unilateral foreleg amputation in the larva. J Comp Physiol A-Sens Neural Behav Physiol 162:715–728

    Article  Google Scholar 

  • Schneider GE (1973) Early lesions of superior colliculus: factors affecting the formation of abnormal retinal projections. Brain Behav Evol 8:73–109

    Article  CAS  PubMed  Google Scholar 

  • Scotto-Lomassese S, Strambi C, Strambi A, Aouane A, Augier R, Rougon G, Cayre M (2003) Suppression of adult neurogenesis impairs olfactory learning and memory in an adult insect. J Neurosci 23:9289–9296

    Google Scholar 

  • Selverston AI, Kleindienst HU, Huber F (1985) Synaptic connectivity between cricket auditory interneurons as studied by selective photoinactivation. J Neurosci 5:1283–1292

    CAS  PubMed  Google Scholar 

  • Shankland M, Bentley D, Goodman CS (1982) Afferent innervation shapes the dendritic branching pattern of the Medial Giant Interneuron in grasshopper embryos raised in culture. Dev Biol 92:507–520

    Article  CAS  PubMed  Google Scholar 

  • Shirasu M, Kimura K, Kataoka M, Takahashi M, Okajima S, Kawaguchi S, Hirasawa Y, Ide C, Mizoguchi A (2000) VAMP-2 promotes neurite elongation and SNAP-25A increases neurite sprouting in PC12 cells. Neuroscience 37:265–275

    CAS  Google Scholar 

  • Soba P, Zhu S, Emoto K, Younger S, al E (2007) Drosophila sensory neurons require Dscam for dendritic self-avoidance and proper dendritic field organization. Neuron

    Google Scholar 

  • Sugimura K, Yamamoto M, Niwa R, Satoh D, Goto S, Taniguchi M, Hayashi S, Uemura T (2003) Distinct developmental modes and lesion-induced reactions of dendrites of two clases of Drosophila sensory neurons. J Neurosci 23:3752–3760

    CAS  PubMed  Google Scholar 

  • Sutton MA, Schuman EM (2005) Local translational control in dendrites and its role in long-term synaptic plasticity. J Neurobiol 64:116–131

    Article  CAS  PubMed  Google Scholar 

  • Tailby C, Wright LL, Metha AB, Calford MB (2005) Activity-dependent maintenance and growth of dendrites in adult cortex. Proc Natl Acad Sci U S A 102:4631–4636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tessier-Lavigne M, Goodman CS (1996) The molecular biology of axon guidance. Science 274:1123–1133

    Article  CAS  PubMed  Google Scholar 

  • Tran TS, Rubio ME, Clem RL, Johnson D, Case L, Tessier-Lavigne M, Huganir RL, Ginty DD, Kolodkin AL (2009) Secreted semaphorins control spine distribution and morphogenesis in the postnatal CNS. :1–7

    Google Scholar 

  • Truman JW, Reiss SE (1988) Hormonal regulation of the shape of identified motoneurons in the moth Manduca sexta. J Neurosci 8:765–775

    CAS  PubMed  Google Scholar 

  • Truman JW, Reiss SE (1995) Neuromuscular metamorphosis in the moth Manduca sexta: hormonal regulation of synapses loss and remodeling. J Neurosci 15:4815–4826

    CAS  PubMed  Google Scholar 

  • Trune DR (1982a) Influence of neonatal cochlear removal on the development of mouse cochlear nucleus: I. Number, size, and density of its neurons. J Comp Neurol 209:409–424

    Article  CAS  PubMed  Google Scholar 

  • Trune DR (1982b) Influence of neonatal cochlear removal on the development of mouse cochlear nucleus: II. Dendritic morphometry of its neurons. J Comp Neurol 209:425–434

    Article  CAS  PubMed  Google Scholar 

  • Vargas ME, Barres BA (2007) Why is Wallerian degeneration in the CNS so slow? Annu Rev Neurosci 30:153–179

    Article  CAS  PubMed  Google Scholar 

  • Wan JS, Erlander MG (1997) Cloning differentially expressed genes by using differential display and subtractive hybridization. Methods Mol Biol 85:45–68

    CAS  PubMed  Google Scholar 

  • Weeks JC, Ernst-Utzschneider K (1989) Respecification of larval proleg motoneurons during metamorphosis of the tobacco hornworm, Manduca sexta: segmental dependence and hormonal regulation. J Neurobiol 20:569–592

    Article  CAS  PubMed  Google Scholar 

  • Williams D (2005) Remodeling dendrites during insect metamorphosis – Williams – 2005 – Journal of Neurobiology – Wiley Online Library. J Neurobiol

    Google Scholar 

  • Williams DW, Truman JW (2005) Remodeling dendrites during insect metamorphosis. J Neurobiol 64:24–33

    Article  CAS  PubMed  Google Scholar 

  • Wohlers DW, Huber F (1982) Processing of sound signals by 6 types of neurons in the prothoracic ganglion of the cricket, Gryllus-campestris. J Comp Physiol 146:161–173

    Article  Google Scholar 

  • Wolf H, Büschges A (1997) Plasticity of synaptic connections in sensory-motor pathways of the adult locust flight system. J Neurophysiol 78:1276–1284

    CAS  PubMed  Google Scholar 

  • Xu X-ZS, Wes P, Chen H, Li H-S, Yu M, Morgan S, Liu Y, Montell C (1998) Retinal targets for calmodulin include proteins implicated in synaptic transmission. J Biol Chem 47:31297–31307

    Article  Google Scholar 

  • Yamashita N, Morita A, Uchida Y, Nakamura F, Usui H, Ohshima T, Taniguchi M, Honnorat J, Thomasset N, Takei K, Takahashi T, Kolattukudy P, Goshima Y (2007) Regulation of spine development by semaphorin3A through cyclin-dependent kinase 5 phosphorylation of collapsin response mediator protein 1. J Neurosci 27:12546–12554

    Article  CAS  PubMed  Google Scholar 

  • Zeng V, Extavour CG (2012) ASGARD: an open-access database of annotated transcriptomes for emerging model arthropod species. Database (Oxford) 2012:bas048

    Google Scholar 

  • Zeng V, Ewen-Campen B, Horch HW, Roth S, Mito T, Extavour CG (2013) Developmental gene discovery in a hemimetabolous insect: de novo assembly and annotation of a transcriptome for the cricket Gryllus bimaculatus Dearden PK, ed. PLoS ONE 8, e61479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zera AJ, Zhao Z, Kaliseck K (2007) Hormones in the field: evolutionary endocrinology of Juvenile Hormone and Ecdysteroids in field populations of the wing-dimorphic cricket Gryllus firmus. Physiol Biochem Zool 80:592–606

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This project was supported by a grant from the National Institute of General Medical Sciences (8 P20 GM103423-12) from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadley Wilson Horch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Horch, H.W., Pfister, A., Ellers, O., Johnson, A.S. (2017). Plasticity in the Cricket Central Nervous System. In: Horch, H., Mito, T., Popadić, A., Ohuchi, H., Noji, S. (eds) The Cricket as a Model Organism. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56478-2_8

Download citation

Publish with us

Policies and ethics