Skip to main content

Trackball Systems for Analysing Cricket Phonotaxis

  • Chapter
  • First Online:
The Cricket as a Model Organism

Abstract

In order to analyse cricket phonotactic walking behaviour, different types of trackball systems have been developed. All trackball systems infer the velocity and direction of the walking insect from the movements of the trackball, however, with different degrees of resolution. Closed-loop systems compensate the animal’s displacements via servomotors counter-rotating the sphere on which the cricket is freely walking and turning. In open-loop systems, the tethered cricket actively rotates the trackball but cannot change its orientation in the sound field. Trackball systems can be combined with high-speed video recordings to analyse the walking motor activity or can be incorporated into neurophysiological set-ups to explore the neural activity underlying phonotaxis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Böhm H, Schildberger K (1992) Brain neurones involved in the control of walking in the cricket Gryllus bimaculatus. J Exp Biol 166(1):113–130

    Google Scholar 

  • Brunner D, Labhardt T (1987) Behavioural evidence for polarization vision in crickets. Physiol Entomol 12(1):1–10

    Article  Google Scholar 

  • Dahmen HJ (1980) A simple apparatus to investigate the orientation of walking insects. Experientia 36(6):685–687

    Article  Google Scholar 

  • Doherty JA, Pires A (1987) A new microcomputer-based method for measuring walking phonotaxis in field crickets (Gryllidae). J Exp Biol 130(1):425–432

    CAS  PubMed  Google Scholar 

  • Gras H, Hörner M (1992) Wind-evoked escape running of the cricket Gryllus bimaculatus: I. Behavioural Analysis. J Exp Biol 171(1):189–214

    Google Scholar 

  • Gras H, Kohstall D (1998) Current injection into interneurons of the terminal ganglion modifies turning behaviour of walking crickets. J Comp Physiol A 182(3):351–361

    Article  Google Scholar 

  • Hedrick AV, Hisada M, Mulloney B (2007) Tama-kugel: hardware and software for measuring direction, distance, and velocity of locomotion by insects. J Neurosci Method 164(1):86–92

    Article  Google Scholar 

  • Hedwig B, Poulet JFA (2004) Complex auditory behaviour emerges from simple reactive steering. Nature 430:781–785

    Article  CAS  PubMed  Google Scholar 

  • Hedwig B, Poulet J (2005) Mechanisms underlying phonotactic steering in the cricket Gryllus bimaculatus revealed with a fast trackball system. J Exp Biol 208(5):915–927

    Article  CAS  PubMed  Google Scholar 

  • Hennig RM (2009) Walking in Fourier’s space: algorithms for the computation of periodicities in song patterns by the cricket Gryllus bimaculatus. J Comp Physiol A 195(10):971–987

    Article  Google Scholar 

  • Hörner M (1992) Wind-evoked escape running of the cricket Gryllus bimaculatus: II. Neurophysiological analysis. J Exp Biol 171(1):215–245

    Google Scholar 

  • Kohstall-Schnell D, Gras H (1994) Activity of giant interneurons and other wind-sensitive elements of the terminal ganglion in the walking cricket. J Exp Biol 193(1):157–181

    CAS  PubMed  Google Scholar 

  • Kramer E (1976) The orientation of walking honeybees in odour fields with small concentration gradients. Physiol Entomol 1:27–37

    Article  Google Scholar 

  • Lott GK, Rosen MJ, Hoy RR (2007) An inexpensive sub-millisecond system for walking measurements of small animals based on optical computer mouse technology. J Neurosci Method 161(1):55–61

    Article  Google Scholar 

  • Pollack GS, Hoy RR (1979) Temporal pattern as a cue for species-specific calling song recognition in crickets. Science 204:429–432

    Article  CAS  PubMed  Google Scholar 

  • Popov A, Shuvalov V (1977) Phonotactic behavior of crickets. J Comp Physiol A 119(1):111–126

    Article  Google Scholar 

  • Rheinlaender J, Blätgen G (1982) The precision of auditory lateralization in the cricket, Gryllus bimaculatus. Physiol Entomol 7(2):209–218

    Article  Google Scholar 

  • Schildberger K, Hörner M (1988) The function of auditory neurons in cricket phonotaxis I. Influence of hyperpolarisation of identified neurons on sound localization. J Comp Physiol A 163(5):621-631

    Article  Google Scholar 

  • Schmitz B, Scharstein H, Wendler G (1982) Phonotaxis in Gryllus campestris L. (Orthoptera, Gryllidae). J Comp Physiol A 148(4):431–444

    Article  Google Scholar 

  • Staudacher EM (2001) Sensory responses of descending brain neurons in the walking cricket, Gryllus bimaculatus. J Comp Physiol A 187(1):1–17

    Article  CAS  PubMed  Google Scholar 

  • Staudacher E, Schildberger K (1998) Gating of sensory responses of descending brain neurones during walking in crickets. J Exp Biol 201(4):559–572

    Google Scholar 

  • Stout JF, DeHaan C, McGhee RW (1983) Attractiveness of the male Acheta domesticus calling song to females. J Comp Physiol A 153(4):509–521

    Article  Google Scholar 

  • Thorson J, Weber T, Huber F (1982) Auditory behavior of the cricket II. Simplicity of calling-song recognition in Gryllus, and anomalous phonotaxis at abnormal carrier frequencies. J Comp Physiol A 146(3):361–378

    Article  Google Scholar 

  • Tschuch G (1976) The influence of synthetic songs on female Gryllus bimaculatus de Geer. Zool J Physiol 80:383–388

    Google Scholar 

  • Verburgt L, Ferguson JWH, Weber T (2008) Phonotactic response of female crickets on the Kramer treadmill: methodology, sensory and behavioural implications. J Comp Physiol A 194(1):79–96

    Article  CAS  Google Scholar 

  • Walikonis R, Schoun D, Zacharias D, Henley J, Coburn P, Stout J (1991) Attractiveness of the male Acheta domesticus calling song to females III. The relation of age-correlated changes in syllable period recognition and phonotactic threshold to juvenile hormone III biosynthesis. J Comp Physiol A 169(6):751–764

    Article  CAS  PubMed  Google Scholar 

  • Weber T, Thorson J (1988) Auditory behavior of the cricket. IV: interaction of direction of tracking with perceived temporal pattern in split-song paradigms. J Comp Physiol A 163(1):13–22

    Article  Google Scholar 

  • Weber T, Thorson J, Huber F (1981) Auditory behavior of the cricket I. Dynamics of compensated walking. J Comp Physiol A 141(3):215–232

    Article  Google Scholar 

  • Wendler G, Dambach M, Schmitz B, Scharstein H (1980) Analysis of the acoustic orientation behavior in crickets (Gryllus campestris L.). Naturwissenschaften 67(2):99–101

    Article  Google Scholar 

  • Witney AG, Hedwig B (2011) Kinematics of phonotactic steering in the walking cricket Gryllus bimaculatus (de Geer). J Exp Biol 214(1):69–79

    Article  PubMed  Google Scholar 

  • Zorovic M, Hedwig B (2011) Processing of species-specific auditory patterns in the cricket brain by ascending, local, and descending neurons during standing and walking. J Neurophysiol 105(5):2181–2194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zorovic M, Hedwig B (2013) Descending brain neurons in the cricket Gryllus bimaculatus (de Geer): auditory responses and impact on walking. J Comp Physiol A 199:25–34

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berthold Hedwig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Hedwig, B. (2017). Trackball Systems for Analysing Cricket Phonotaxis. In: Horch, H., Mito, T., Popadić, A., Ohuchi, H., Noji, S. (eds) The Cricket as a Model Organism. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56478-2_19

Download citation

Publish with us

Policies and ethics