Skip to main content

History of Cricket Biology

  • Chapter
  • First Online:
The Cricket as a Model Organism

Abstract

“Cricket Behavior and Neurobiology” (Huber et al. 1989) summarized what were, at that time, the main areas of research on crickets. In his preface to the book, Franz Huber wrote “We hope this book stimulates cross-fertilization between different biological fields and encourages scientific progress.” One purpose of the present book is to document the considerable progress and cross-field interaction in studying crickets that has taken place in the years since “Cricket Behavior and Neurobiology” was published. Another goal is to make the case that crickets are excellent model organisms for studying problems in a broad range of biology extending beyond behavior and neurobiology. Although mankind’s millennia-old interest in crickets can be ascribed to their fascinating and easily observed behaviors, such as singing and fighting (Laufer 1927), recent advances have made it possible to address questions in areas including molecular, developmental, and evolutionary biology. Bentley and Hoy (1974), summarizing genetic, behavioral, and neurobiological studies on the mechanisms underlying production and responding to cricket songs, likened crickets to decathlon athletes: “We view the cricket as a kind of decathlon performer in neurobiology: it may not excel at any one thing, but it can be counted on for a sound performance in every event.” The technical and conceptual advances covered in the present volume show that the range of events in which crickets can be viewed as serious contenders has now broadened considerably.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander RD (1962) Evolutionary change in cricket acoustical communication. Evolution 16:443–462

    Article  Google Scholar 

  • Anderson DT (1972) The development of hemimetabolous insects. Academic, London/New York

    Google Scholar 

  • Awata H, Watanabe T, Hamanaka Y, Mito T, Noji S, Mizunami M (2015) Knockout crickets for the study of learning and memory: dopamine receptor Dop1 mediates aversive but not appetitive reinforcement in crickets. Sci Rep 5:15885

    Google Scholar 

  • Baden T, Hedwig B (2006) Neurite-specific Ca2+ dynamics underlying sound processing in an auditory interneurone. J Neurobiol 67:68–80

    Google Scholar 

  • Bailey NW, Zuk M (2009) Field crickets change mating preferences using remembered social information. Biol Lett 5:449–451

    Article  PubMed  PubMed Central  Google Scholar 

  • Bando T, Mito T, Nakamura T, Ohuchi H, Noji S (2011) Regulation of leg size and shape: involvement of the Dachsous-fat signaling pathway. Dev Dyn 240:1028–1041

    Article  PubMed  Google Scholar 

  • Barrangou R (2013) CRISPR-Cas systems and RNA-guided interference. Wiley Interdiscip Rev: RNA 4:267–278

    Article  CAS  PubMed  Google Scholar 

  • Bennet-Clark H (1989) Songs and the physics of sound production. In: Huber F, Moore TE, Loher W (eds) Cricket behavior and neurobiology. Cornell University Press, Ithaca, pp 227–261

    Google Scholar 

  • Bentley DR (1975) Single gene cricket mutations: effects on behavior, sensilla, sensory neurons, and identified interneurons. Science 187:760–764

    Article  CAS  PubMed  Google Scholar 

  • Bentley DR, Hoy RR (1972) Genetic control of the neuronal network generating cricket (Teleogryllus Gryllus) song patterns. Anim Behav 20:478–492

    Article  CAS  PubMed  Google Scholar 

  • Bentley DR, Hoy RR (1974) The neurobiology of cricket song. Sci Am 231:34–44

    Google Scholar 

  • Brodfuhrer PD, Hoy RR (1990) Ultrasound sensitive neurons in the cricket brain. J Comp Physiol A 166:651–662

    Google Scholar 

  • Campbell G, Tomlinson A (1995) Initiation of the proximodistal axis in insect legs. Development 121:619–628

    CAS  Google Scholar 

  • Coast G, Kay II (1994) The effects of Acheta diuretic peptide on isolated Malpighian tubules from the house cricket Acheta domesticus. J Exp Biol 187:225–243

    CAS  PubMed  Google Scholar 

  • Danbara Y, Sakamoto T, Uryu O, Tomioka K (2010) RNA interference of timeless gene does not disrupt circadian locomotor rhythms in the cricket Gryllus bimaculatus. J Insect Physiol 56:1738–1745

    Google Scholar 

  • Dudley R, Yanoviak SP (2011) Animal aloft: the origins of aerial behavior and flight. Integr Comp Biol 51:926–936

    Google Scholar 

  • Giurfa M (2013) Cognition with few neurons: higher-order learning in insects. Trends Neurosci 36:285–294

    Article  CAS  PubMed  Google Scholar 

  • Hayes TK, Pannabecker TL, Hinckley DJ, Holman GM, Nachman RJ, Petzel DH, Beyenbach KW (1989) Leucokinins, a new family of ion transport stimulators and inhibitors in insect Malpighian tubules. Life Sci 44:1259–1266

    Article  CAS  PubMed  Google Scholar 

  • Hennig RM (1990) Neuronal control of the forewings in two different behaviours: stridulation and flight in the cricket, Teleogryllus commodus. J Comp Physiol A 167:617–627

    Google Scholar 

  • Honneger H-W, Campan R (1989) Vision and visually guided behavior. In: Huber F, Moore TE, Loher W (eds) Cricket behavior and neurobiology. Cornell University Press, Ithaca, pp 147–178

    Google Scholar 

  • Hoy RR (1978) Acoustic communication in crickets: a model system for the study of feature detection. Fed Proc 37:2316–2323 

    CAS  PubMed  Google Scholar 

  • Hoy RR, Paul RC (1973) Genetic control of song specificity in crickets. Science 180:82-83

    Google Scholar 

  • Huber F (1962) Central nervous control of sound production in crickets and some speculations on its evolution. Evolution 16:429–442

    Article  Google Scholar 

  • Huber F, Moore TE, Loher W (eds) (1989) Cricket behavior and neurobiology. Cornell University Press, Ithaca, 565 pp

    Google Scholar 

  • Jacobs GA, Miller JP, Aldworth Z (2008) Computational mechanisms of mechanosensory processing in the cricket. J Exp Biol 211:1819–1828

    Google Scholar 

  • Kostarakos K, Hedwig B (2013) Calling song recognition in female crickets: temporal tuning of identified brain neurons matches behavior. J Neurosci 32:9601–9612

    Article  Google Scholar 

  • Kukalová-Peck J (1987) New carboniferous diplura, monura, and thysanura, the hexapod ground plan, and the role of thoracic side lobes in the origin of wings (insecta). Can J Zool 65:2327–2345

    Article  Google Scholar 

  • Laufer B (1927) Insect musicians and cricket champions of China. Field Museum of Natural History, Chicago

    Google Scholar 

  • Loher W (1989) Temporal organization of reproductive behavior. In: Huber F, Moore TE, Loher W (eds) Cricket behavior and neurobiology. Cornell University Press, Ithaca, pp 83–113

    Google Scholar 

  • Lutz FE (1932) Experiments with Orthoptera concerning diurnal rhythm. Am Mus Novit 550:1–24

    Google Scholar 

  • Malaterre J, Strambi C, Chiang AS, Aouane A, Strambi A, Cayre M (2002) Development of cricket mushroom bodies. J Comp Neurol 452:215–227

    Article  PubMed  Google Scholar 

  • Marsat G, Pollack GS (2004) Differential temporal coding of rhythmically diverse acoustic signals by a single interneuron. J Neurophysiol 92:939–948

    Article  CAS  PubMed  Google Scholar 

  • Marsat G, Pollack GS (2006) A behavioral role for feature detection by sensory bursts. J Neurosci 26:10542–10547

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto Y, Unoki S, Aonuma H, Mizunami M (2006) Critical role of nitric oxide-cGMP cascade in the formation of cAMP-dependent long-term memory. Learn Mem 13:35–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meinhardt H (1982) Models of biological pattern formation. Academic Press, London

    Google Scholar 

  • Meyering-Vos M, Merz S, Sertkol M, Hoffmann KH (2006) Functional analysis of the allatostatin-A type gene in the cricket Gryllus bimaculatus and the armyworm Spodoptera frugiperda. Insect Biochem Mol Biol 36:492–504

    Article  CAS  PubMed  Google Scholar 

  • Mito T, Inoue Y, Kimura S, Miyawaki K, Niwa N, Shinmyo Y, Ohuchi H, Noji S (2002) Involvement of hedgehog, wingless, and dpp in the initiation of proximodistal axis formation during the regeneration of insect legs, a verification of the modified boundary model. Mech Dev 114:27–35

    Article  CAS  PubMed  Google Scholar 

  • Mito T, Nakamura T, Noji S (2010) Evolution of insect development: to the hemimetabolous paradigm. Curr Opin Genet Dev 20:355–361

    Article  CAS  PubMed  Google Scholar 

  • Mizunami M, Matsumoto Y (2010) Roles of aminergic neurons in formation and recall ofassociative memory in crickets. Front Behav Neurosci doi: 10.3389/fnbeh.2010.00172

    Google Scholar 

  • Nachman RJ, Holman GM, Cook BJ (1986) Active fragments and analogs of the insect neuropeptide leucopyrokinin: structure-function studies. Biochem Biophys Res Commun 137:936–942

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Mito T, Bando T, Ohuchi H, Noji S (2008) Dissecting insect leg regeneration through RNA interference. Cell Mol Life Sci 65:64–72

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Yoshizaki M, Ogawa S, Okamoto H, Shinmyo Y, Bando T, Ohuchi H, Noji S, Mito T (2010) Imaging of transgenic cricket embryos reveals cell movements consistent with a syncytial patterning mechanism. Curr Biol 20:1641–1647

    Article  CAS  PubMed  Google Scholar 

  • Neuhuser T, Sorge D, Stay B, Hoffmann KH (1994) Responsiveness of the adult cricket (Gryllus bimaculatus and Acheta domesticus) retrocerebral complex to allatostatin-1 from a cockroach, Diploptera punctata. J Comp Physiol B 164:23–31

    Article  CAS  PubMed  Google Scholar 

  • Niwa N, Inoue Y, Nozawa A, Saito M, Misumi, Ohuchi H, Yoshioka H, Noji S (2000) Correlation of diversity of leg morphology in Gryllus bimaculatus (cricket) with divergence in dpp expression pattern during leg development. Development 127:4373–4381

    CAS  PubMed  Google Scholar 

  • Ogawa H, Cummins GI, Jacobs GA, Oka K (2008) Dendritic design implements algorithm for synaptic extraction of sensory information. J Neurosci 28:4592–4603

    Google Scholar 

  • Peschel N, Helfrich-Förster C (2011) Setting the clock – by nature: circadian rhythms in the fruitfly Drosophila melanogaster. FEBS Lett 585:1435–1442

    Article  CAS  PubMed  Google Scholar 

  • Pires A, Hoy RR (1992) Temperature coupling in cricket acoustic communication II. Localization of temperature effects on song production and recognition networks in Gryllus firmus. J Comp Physiol A 171:79–92

    Google Scholar 

  • Pollack GS, Hoy RR (1979) Temporal pattern as a cue for species-specific calling song recognition in crickets. Science 204:429–432

    Google Scholar 

  • Pollack GS, Hoy RR (1989) Evasive acoustic behavior and its neurobiological basis. In: Huber F, Moore TE, Loher W (eds) Cricket behavior and neurobiology. Cornell University Press, Ithaca, pp 340–363

    Google Scholar 

  • Rachinsky A, Zhang J, Tobe SS (1994) Signal transduction in the inhibition of juvenile hormone biosynthesis by allatostatins: roles of diacylglycerol and calcium. Mol Cell Endocrinol 105:89–96

    Article  CAS  PubMed  Google Scholar 

  • Reagan JD (1996) Molecular cloning and function expression of a diuretic hormone receptor.from the house cricket, Acheta domesticus. Insect Biochem Mol Biol 26:1–6

    Article  CAS  PubMed  Google Scholar 

  • Regen J (1913) Über die Anlockung des Weibchens von Gryllus campestris L. durch telephonisch übertagene Stridulationslaute des Männchens. Akad Wiss Math Nat Kl Abt I (Wien) 132:81–88

    Google Scholar 

  • Roberston RM, Pearson KG, Reichert H (1982) Flight interneurons in the locust and the origin of insect wings. Science 217:177–179

    Google Scholar 

  • Roeder KD (1948) Organization of the ascending giant fiber system in the cockroach (Periplaneta Americana). J Exp Zool 108:243–261

    Google Scholar 

  • Sabourin P, Pollack GS (2009) Behaviorally relevant burst coding in primary sensory neurons. J Neurophysiol 102:1086–1091

    Article  PubMed  Google Scholar 

  • Schildberger K, Huber F, Wohlers DW (1989) Central auditory pathway: neuronal correlates of phonotactic behavior. In: Huber F, Moore TE, Loher W (eds) Cricket behavior and neurobiology. Cornell University Press, Ithaca, pp 423–458

    Google Scholar 

  • Schöneich S, Hedwig B (2012) Cellular basis for singing motor pattern generation in the field cricket (Gryllus bimaculatus DeGeer). Brain Behav 2(6):707–725

    Google Scholar 

  • Sehgal A, Price JL, Man B, Young MW (1994) Loss of circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless. Science 263(5153):1603–1606

    Article  CAS  PubMed  Google Scholar 

  • Shaw KL, Lesnick SC (2009) Genomic linkage of male song and female acoustic preference QTL underlying a rapid species radiation. Proc Natl Acad Sci U S A 106:9737–9742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw KL, Parsons YM, Lesnick SC (2007) QTL analysis of a rapidly evolving speciation phenotype in the Hawaiian cricket Laupala. Mol Ecol 16:2879–2892

    Article  CAS  PubMed  Google Scholar 

  • Takahashi T, Hamada A, Miyawaki K, Matsumoto Y, Mito T, Noji S, Mizunami M (2009) Systemic RNA interference for the study of learning and memory in an insect. J Neurosci Methods 179:9–15

    Google Scholar 

  • Tinbergen N (1952) The study of instinct. Clarendon Press/Oxford University Press, New York. 237 pp

    Google Scholar 

  • Tomioka K, Andalsalam S (2004) Circadian organization in hemimetabolous insects. Zool Sci 21:1153–1162

    Google Scholar 

  • Tomioka K, Sakamot T, Moriyama Y (2009) RNA interference is a powerful tool for chronobiological study in the cricket. Sleep Biol Rhythm 7:144–151

    Article  Google Scholar 

  • von Frisch K (1914) Der Farbensinn und Formensinn der Biene. Zool Jb Physiol 35:1–188

    Google Scholar 

  • Wagner WE, Smeds MR, Wiegmann DD (2001) Experience affects female responses to male song in the variable field cricket Gryllus lineaticeps (Orthoptera, Gryllidae). Ethology 107:769–776

    Article  Google Scholar 

  • Wang J, Meyering-Vos M, Hoffmann KH (2004) Cloning and tissue-specific localization of cricket-type allatostatins from Gryllus bimaculatus. Mol Cell Endocrinol 227:41–51

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Ochiai H, Sakuma T, Horch HW, Hamaguchi N, Nakamura T, Bando T, Ohuchi H, Yamamoto T, Noji S, Mito T (2012) Non-transgenic genome modifications in a hemimetabolous insect using zinc-finger and TAL effector nucleases. Nat Commun 3:1017

    Article  PubMed  PubMed Central  Google Scholar 

  • Weber T, Thorson J (1989) Phonotactic behavior of walking crickets. In: Huber F, Moore TE, Loher W (eds) Cricket behavior and neurobiology. Cornell University Press, Ithaca, pp 310–339

    Google Scholar 

  • Wigglesworth VB (1934) The physiology of ecdysis in Rhodnius prolixus (Hemiptera). II Factors controlling moulting and metamorphosis. Q J Microsc Sci 77:191–223

    Google Scholar 

  • Wiley C, Ellison CK, Shaw KL (2012) Widespread genetic linkage of mating signals and preferences in the Hawaiian cricket Laupala. Proc Biol Sci 279:1203–1209

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald S. Pollack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Pollack, G.S., Noji, S. (2017). History of Cricket Biology. In: Horch, H., Mito, T., Popadić, A., Ohuchi, H., Noji, S. (eds) The Cricket as a Model Organism. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56478-2_1

Download citation

Publish with us

Policies and ethics