Skip to main content

Physical Ethology of Unicellular Organisms

  • Chapter
  • First Online:
Brain Evolution by Design

Part of the book series: Diversity and Commonality in Animals ((DCA))

Abstract

In this chapter, some behaviours of unicellular organisms that appear to be smart or intelligent are reported. Two topics are the focus from two major groups of eukaryotic unicellular organisms, amoebae and ciliates: (1) anticipatory capacity of periodic environmental events in an amoeba and (2) environment-induced development of a new type of behaviour in a ciliate. A mechanism of these behaviours is discussed, based on a mechanical equation of motion. Ethology (the science of animal behaviour) of unicellular organisms is recently being studied from a physical point of view. We propose to call this kind of study {physical ethology}. Physical ethology may give us some hints about the origin of primitive intelligence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The expression of the functions for the voltage-dependent reaction rates (α, β) were determined by reference to the measurement data available from (Hirano et al. 2005) as follows: αm (V) = 0.39(46.40 − V)/(exp(0.039(46.40 − V)) − 1), β m (V) = 0.65 exp(−V/15), α h (V) = 0.05 exp(−V/50), β h (V) = 1.0(exp(0.032(V − 39.29)) + 1), α n (V) = 0.038(58.58 − V)/(exp((58.58 − V)/8.17) − 1), β n (V) = 0.10 exp(−V/68). However the α h was determined ad hoc, because its data were not available. The constant values in this paper were set as follows (Naitoh 1990; Hirano et al. 2005). E r  = −30, E Ca  = +116, E K  = −41, E L  = −25,V • = E • − E r . \( {\overline{g}}_{Ca}=0.67 \), \( {\overline{g}}_{Ca}=1.34 \), \( {\overline{g}}_L:=\left({g}_{Ca}^{\infty }(0){V}_{Ca}+{g}_K^{\infty }(0){V}_K\right)/{V}_L \), C m  = 1.0. Ca K

  2. 2.

    In the simulation, the δp assumed to be proportional to ns(n − ns)/n2 so that ns grows and saturates in a sigmoidal manner, where n is the total number of the Ca2+ channels and ns is the number of the modified channels. The update equation for p = ns/n is given as p(t) = (p(ti) + kpp(ti)(1 − p(ti))) exp(−(t − ti)/τ p) + p ε , where ti is the most recent collision time, 0 < kp ≤ 1 is a growth rate, τ p is a relaxation time constant, and p ε is a sufficiently small positive constant.

References

  • Applewhite P (1979) Learning in protozoa. In: Biochemistry and physiology of protozoa, vol 1. Academic Press, New York, pp 341–353

    Chapter  Google Scholar 

  • Ball P (2008) Cellular memory hints at the origins of intelligence. Nature (Lond) 451:358

    Google Scholar 

  • Bramstedt F (1935) Dressurversuche mit paramecium caudatum und stylonychia mytilus. Z Vergl Physiol 22:490–516

    Article  Google Scholar 

  • Bray D (2009) Wetware: a computer in every living cell. Yale University Press, New Haven

    Google Scholar 

  • Chung JR, Choe Y (2009) Emergence of memory-like behavior in reactive agents using external markers. In: 21st IEEE international conference on tools with artificial intelligence, pp 404–408

    Google Scholar 

  • Church RM (1978) The internal clock. In: Hulse SH, Fowler H, Honing WK (eds) Cognitive processes in animal behavior. Erlbaum, Hillsdale

    Google Scholar 

  • Corning WC, Von Burg R (1973) Protozoa. In: Corning WC, Dyal JA, Willows AOD (eds) Invertebrate learning. Plenum Press, New York, pp 49–122

    Chapter  Google Scholar 

  • Dunlap K (1977) Localization of calcium channels in paramecium caudatum. J Physiol 271:119–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckert R, Brehm P (1979) Ionic mechanisms of excitation in Paramecium. Annu Rev Biophys Bioeng 8:353–383

    Article  CAS  PubMed  Google Scholar 

  • Eisenstein EM (1975) Aneural systems and neurobiology: a point of view. In: Eisenstein EM (ed) Aneural organisms in neurobiology. Plenum Press, New York, pp 1–4

    Chapter  Google Scholar 

  • Gould JL, Gold CG (1988) The honey bee (Scientific American Library, vol 186). Freeman, San Francisco

    Google Scholar 

  • Hinkle DJ, Wood DC (1994) Is tube-escape learning by protozoa associative learning. Behav Neurosci 108:94–99

    Article  CAS  PubMed  Google Scholar 

  • Hirano A, Tsuji T, Takiguchi N, Ohtake H (2005) Modeling of the membrane potential change of paramecium for mechanical stimuli. Trans SICE 41:351–357

    Article  Google Scholar 

  • Jennings H (1906) Behavior of the lower organisms. Indiana University Press, Bloomington

    Book  Google Scholar 

  • Kunita I, Sato S, Saigusa T, Nakagaki T (2013) Ethological response to periodic stimulation in Chara and Brepharisma. In: Natural computing and beyond, Proceedings in Information and Communications Technology (PICT), vol 6. Springer, New York, p 3–3

    Google Scholar 

  • Kunita I, Kuroda S, Ohki K, Nakagaki T (2014) Attempts to retreat from a dead-ended long capillary by backward swimming in Paramecium. Front Microbiol 5:270. doi:10.3389/fmicb.2014.0027

    Article  PubMed  PubMed Central  Google Scholar 

  • Machemer H (1974) Frequency and directional responses of cilia to membrane potential changes in Paramecium. J Comp Physiol 92:293–316

    Article  Google Scholar 

  • Machemer H, Ogura A (1979) Ionic conductances of membranes in ciliated and deciliated paramecium. J Physiol 296:49–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meck WH, Church RM, Olton DS (1984) Hippocampus, time, and memory. Behav Neurosci 98:3–22

    Article  CAS  PubMed  Google Scholar 

  • Naitoh Y (1979) Membrane currents in voltage clamped Paramecium and their relations to ciliary motion. Acta Protozool 18:1–6

    Google Scholar 

  • Naitoh Y (1990) Behavior of unicellular animals (in Japanese). University of Tokyo Press, Tokyo

    Google Scholar 

  • Naitoh Y, Eckert R (1969) Ionic mechanisms controlling behavioral responses of Paramecium to mechanical stimulation. Science 164:964–965

    Article  Google Scholar 

  • Naitoh Y, Kaneko H (1972) Reactivated triton-extracted models of Paramecium: modification of ciliary movement by calcium ions. Science 176:523–524

    Article  CAS  Google Scholar 

  • Naitoh Y, Sugino K (1984) Ciliary movement and its control in Paramecium. J Protozool 3:31–40

    Article  Google Scholar 

  • Nakagaki T, Yamada H, Tóth A (2000) Maze-solving by an amoeboid organism. Nature (Lond) 407:470

    Article  CAS  Google Scholar 

  • Nakagaki T, Yamada H, Tóth A (2001) Path finding by tube morphogenesis in an amoeboid organism. Biophys Chem 92:47–52

    Article  CAS  PubMed  Google Scholar 

  • Nakamura S, Kamiya N (1985) Regional difference in oscillatory characteristics of Physarum plasmodium as revealed by surface pH. Cell Struct Funct 10:173–176

    Article  Google Scholar 

  • Pershin YV, La Fontaine S, Di Ventra M (2009) Memristive model of amoeba learning. Phys Rev E 80:021926

    Article  Google Scholar 

  • Reid CR, Latty T, Dussutour A, Beekman M (2012) Slime mold uses an externalized spatial memory to navigate in complex environments. Proc Natl Acad Sci USA 109(43):17490–17494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reid CR, Beekman M, Latty T, Dussutour A (2013) Amoeboid organism uses extracellular secretions to make smart foraging decisions. Behav Ecol 24(4):812–818

    Article  Google Scholar 

  • Roberts S, Church RM (1978) Control of an internal clock. J Exp Psychol Anim Behav Process 4:318–337

    Article  Google Scholar 

  • Saigusa T, Tero A, Nakagaki T, Kuramoto Y (2008) Amoebae anticipate periodic events. Phys Rev Lett 100:018101

    Article  PubMed  Google Scholar 

  • Smith S (1908) The limits of educability in Paramecium. J Comp Neurol Psychol 18:499–510

    Article  Google Scholar 

  • Tachikawa M (2010) A mathematical model for period-memorizing behavior in Physarum plasmodium. J Theor Biol 263:449–454

    Article  PubMed  Google Scholar 

  • Takagi S, Ueda T (2008) Emergence and transitions of dynamic patterns of thickness oscillation of the plasmodium of the true slime mold Physarum polycephalum. Physica D 237:420–427

    Article  Google Scholar 

  • Tero A, Kobayashi R, Nakagaki T (2006) Physarum solver: a biologically inspired method for road-network navigation. Physica A 363:115

    Article  Google Scholar 

  • Tero A, Kobayashi R, Nakagaki T (2007) Mathematical model for adaptive transport network in path finding by true slime mold. J Theor Biol 244:553–564

    Article  PubMed  Google Scholar 

  • Tero A, Takagi T, Saigusa T, Ito K, Bebber DP, Fricker MD, Yumiki Y, Kobayashi R, Nakagaki T (2010) Rules for biologically-inspired adaptive network design. Science 327:439–442

    Article  CAS  PubMed  Google Scholar 

  • Trewavas A (2003) Aspects of plant intelligence. Ann Bot 92:1–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trewavas A (2005) Green plants as intelligent organisms. Trends Plant Sci 10:413–419

    Article  CAS  PubMed  Google Scholar 

  • Ueda T (1993) Pattern dynamics in cellular perception. Phase Transit 45:93–104

    Article  CAS  Google Scholar 

  • Ueda T, Nakagaki T, Yamada T (1990) Dynamic organization of ATP and birefringent fibrils during free locomotion and galvanotaxis in the plasmodium of Physarum polycephalum. J Cell Biol 110:1097–1102

    Article  CAS  PubMed  Google Scholar 

  • Yoshiyama S, Ishigami M, Nakamura A, Kohama K (2010) Calcium wave for cytoplasmic streaming of Physarum polycephalum. Cell Biol Int 34:35–40

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by JSPS KAKENHI grant no. 26310202, and by a Grant-in-Aid for Scientific Research on Innovative Area ‘Fluctuation and Structure’ (no. 25103006) and ‘Cross talk between moving cells and microenvironment’ (no. 25111726) from Mext Japan, and by Strategic Japanese-Swedish Research Cooperative Program, Japan Science and Technology Agency (JST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Kuroda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Kuroda, S., Takagi, S., Saigusa, T., Nakagaki, T. (2017). Physical Ethology of Unicellular Organisms. In: Shigeno, S., Murakami, Y., Nomura, T. (eds) Brain Evolution by Design. Diversity and Commonality in Animals. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56469-0_1

Download citation

Publish with us

Policies and ethics