Skip to main content
Book cover

Metallomics pp 93–106Cite as

Quantitative Elemental Bioimaging Protocol Using Femtosecond-Laser Ablation-ICP-Mass Spectrometry Coupled with Glass Standard Reference Material

  • Chapter
  • First Online:

Abstract

We have developed new analytical technique for the quantitative elemental imaging for trace elements using a femtosecond-laser ablation-ICP-mass spectrometry (fs-LA-ICP-MS). With the laser ablation under the finely controlled fluence, sliced alveolar tissue samples (thickness 1 μm), placed on the glass slide, were totally ablated, and the laser-induced sample aerosols were introduced into the ICP. Hence, no laser ablation was achieved on the glass substrate because the laser fluence was lower than the energy threshold for the laser ablation phenomena of glass materials. Under the total ablation conditions, the ablated volume of the sample could be well defined, and therefore, concentrations of the analytes can be calibrated based on the signal intensity data and the volume of the sample and glass standard reference material. Combination of the LA-ICP-MS technique and the preferential and total ablation achieved by the soft ablation protocol can become a powerful method for studying the trace elements and pharmacokinetics containing metal elements through the quantitative imaging. Analytical spatial resolution of the imaging analysis as well as the detection limit of the present analytical technique will be discussed in this study.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Walczyk T, Blanckenburg FV (2005) Deciphering the iron isotope message of the human body. Int J Mass Spectrom 242:117–134

    Article  CAS  Google Scholar 

  2. Bullen TD, Walczyk T (2009) Environmental and biomedical applications of natural metal stable isotope variations. Elements 5:381–385

    Article  CAS  Google Scholar 

  3. Aramendia M, Rello L, Resano M, Vanhaecke F (2013) Isotopic analysis of Cu in serum samples for diagnosis of Wilson’s disease: a pilot study. J Anal At Spectrom 28:675. doi:10.1039/c3ja30349g

    Article  CAS  Google Scholar 

  4. Zoriy MV, Dehnhardt M, Reifenberger G, Zilles K, Becker JS (2006) Imaging of Cu, Zn, Pb and U in human brain tumor resections by laser ablation inductively coupled plasma mass spectrometry. Int J Mass Spectrom 257:27–33

    Article  CAS  Google Scholar 

  5. Hare D, Austin C, Doble P (2012) Quantification strategies for elemental imaging of biological samples using laser ablation-inductively coupled plasma-mass spectrometry. Analyst 137:1527–1537

    Article  CAS  PubMed  Google Scholar 

  6. Takeda A, Tamano H, Enomoto S, Oku N (2001) Zinc-65 imaging of rat brain tumors. Cancer Res 61:5065–5069

    CAS  PubMed  Google Scholar 

  7. Chandra S, Morrison GH (1995) Imaging ion and molecular transport at subcellular resolution by secondary ion mass spectrometry. Int J Mass Spectrom 143:161–176

    Article  CAS  Google Scholar 

  8. McDonnell LA, Heeren RMA (2007) Imaging mass spectrometry. Mass Spectrom Rev 26:606–643

    Article  CAS  PubMed  Google Scholar 

  9. Günther D, Frischknecht R, Heinrich C, Kahlert HJ (1997) Capabilities of an argon fluoride 193 nm excimer laser for laser ablation inductively coupled plasma mass spectrometry microanalysis of geological mateirals. J Anal At Spectrom 12:939–944

    Article  Google Scholar 

  10. Ghazi AM, Wataha JC, O’Dell NL, Singh BB, Simmons R, Shuttleworth S (2002) Quantitative concentration profiling of nickel in tissues around metal implants: a new biomedical application of laser ablation sector field ICP-MS. J Anal At Spectrom 17:1295–1299

    Article  CAS  Google Scholar 

  11. Durrant SF (1999) Laser ablation inductively coupled plasma mass spectrometry: achievements, problems, prospects. J Anal At Spectrom 14:1385–1403

    Article  CAS  Google Scholar 

  12. Russo RE, Mao X, Gonzalez JJ, Zorba V, Yoo J (2013) Laser ablation in analytical chemistry. Anal Chem 85:6162–6177

    Article  CAS  PubMed  Google Scholar 

  13. Limbeck A, Galler P, Bonta M, Bauer G, Nischkauer W, Vanhaecke F (2015) Recent advances in quantitative LA-ICP-MS analysis: challenges and solutions in the life sciences and environmental chemistry. Anal Bioanal Chem 407:6593–6617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jackson B, Harper S, Smith L, Flinn J (2006) Elemental mapping and quantitative analysis of Cu, Zn, and Fe in rat brain sections by laser ablation ICP-MS. Anal Bioanal Chem 384:951–957

    Article  CAS  PubMed  Google Scholar 

  15. Lobinski R, Moulin C, Ortega R (2006) Imaging and speciation of trace elements in biological environment. Biochimie 88:1591–1604

    Article  CAS  PubMed  Google Scholar 

  16. Zoriy MV, Becker JS (2007) Imaging of elements in thin cross sections of human brain samples by LA-ICP-MS: a study on reproducibility. Int J Mass Spectrom 264:175–180

    Article  CAS  Google Scholar 

  17. Becker JS, Zoriy M, Becker JS, Dobrowolska J, Matusch A (2007) Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) in elemental imaging of biological tissues and in proteomics. J Anal At Spectrom 22:736–744

    Article  CAS  Google Scholar 

  18. Santos MC, Wagner M, Wu B, Scheider J, Oehlmann J, Cadore S, Becker JS (2009) Biomonitoring of metal contamination in a marine prosobranch snail (Nassarius reticulatus) by imaging laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Talanta 80:428–433

    Article  CAS  PubMed  Google Scholar 

  19. Becker JS, Breuer U, Hsieh HF, Osterholt T, Kumtabtim U, Wu B, Matusch A, Caruso JA, Qin Z (2010) Bioimaging of metals and biomolecules in mouse heart by laser ablation inductively coupled plasma mass spectrometry and secondary ion mass spectrometry. Anal Chem 82:9528–9533

    Article  CAS  PubMed  Google Scholar 

  20. Hare D, Austin C, Doble P, Arora M (2011) Elemental bio-imaging of trace elements in teeth using laser ablation-inductively coupled plasma-mass spectrometry. J Dent 39:397–403

    Article  CAS  PubMed  Google Scholar 

  21. Gordalíza EM, Giesen C, Lázaro A, Fernández DE, Humanes B, Cañas B, Panne U, Tejedor A, Jakubowski N, Gómez-Gómez MM (2011) Elemental bioimaging in kidney by LA-ICP-MS as a tool to study nephrotoxicity and renal protective strategies in cisplatin therapies. Anal Chem 83:7933–7940

    Article  Google Scholar 

  22. Konz I, Fernandez B, Fernandez ML, Pereiro R, Sanz-Medel A (2011) Absolute quantification of human serum transferrin by species-specific isotope dilution laser ablation ICP-MS. Anal Chem 83:5353–5360

    Article  CAS  PubMed  Google Scholar 

  23. Sela H, Karpas Z, Zoriy M, Pickhardt C, Becker JS (2007) Biomonitoring of hair samples by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Int J Mass Spectrom 261:199–207

    Article  CAS  Google Scholar 

  24. Hoffmann E, Ludke C, Skole J, Stephanowitz H, Ullrich E, Colditz D (2000) Spatial determination of elements in green leaves of oak trees (Quercus robur) by laser ablation-ICP-MS. Fresenius J Anal Chem 367:579–585

    Article  CAS  PubMed  Google Scholar 

  25. Wu B, Zoriy M, Chen Y, Becker JS (2009) Imaging of nutrient elements in the leaves of Elsholtzia splendens by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Talanta 78:132–137

    Article  CAS  PubMed  Google Scholar 

  26. Frick DA, Günther D (2012) Fundamental studies on the ablation behaviour of carbon in LA-ICP-MS with respect to the suitability as internal standard. J Anal At Spectrom 27:1294–1303

    Article  CAS  Google Scholar 

  27. Eggins SM, Kinsley LPJ, Shelly JMG (1998) Deposition and element fractionation processes during atmospheric pressure laser sampling for analysis by ICP-MS. Appl Surf Sci 127–129:278–286

    Article  Google Scholar 

  28. Günther D, Heinrich K (1999) Enhanced sensitivity in laser ablation-ICP mass spectrometry using helium-argon mixtures as aerosol carrier. J Anal At Spectrom 14:1363–1368

    Article  Google Scholar 

  29. Guilong M, Günther D (2002) Effect of particle size distribution on ICP induced elemental fractionation in laser ablation inductively coupled plasma mass spectrometry. J Anal At Spectrom 17:831–837

    Article  Google Scholar 

  30. Kuhn H, Günther D (2004) Laser ablation-ICP-MS: particle size dependent elemental composition studies on filter-collected and online measured aerosols from glass. J Anal At Spectrom 19:1158–1164

    Article  CAS  Google Scholar 

  31. Koch J, Günther D (2006) Femtosecond laser ablation inductively coupled plasma mass spectrometry: achievements and remaining problems. Anal Bioanal Chem 387:149–153

    Article  PubMed  Google Scholar 

  32. Pisonero J, Günther D (2008) Femtosecond laser ablation inductively coupled plasma mass spectrometry: fundamentals and capabilities for depth profiling analysis. Mass Spectrom Rev 27:609–623

    Article  CAS  PubMed  Google Scholar 

  33. Flamigni L, Koch J, Günther D (2014) The effect of carrier gas humidity on the vaporization of laser-produced aerosols in inductively coupled plasmas. J Anal At Spectrom 29:280–286

    Article  CAS  Google Scholar 

  34. Morita A, Kimura M, Itokawa Y (1994) The effect of aging on the mineral status of female mice. Biol Trace Elem Res 42:165–177

    Article  CAS  PubMed  Google Scholar 

  35. Chen Z, Meng H, Yuan H, Xing G, Chen C, Zhao F, Wang Y, Zhang C, Zhao Y (2007) Identification of target organs of copper nanoparticles with ICP-MS technique. J Radioanal Nucl Chem 272:599–603

    Article  CAS  Google Scholar 

  36. Fujihara J, Tongu M, Hashimoto H, Yamada T, Kimura-Kataoka K, Yasuda T, Fujita Y, Takeshita H (2015) Distribution and toxicity evaluation of ZnO dispersion nanoparticles in single intravenously exposed mice. J Med Invest 62:45–50

    Article  PubMed  Google Scholar 

  37. Hirata T, Kon Y (2008) Evaluation of the analytical capability of NIR femtosecond laser ablation-inductively coupled plasma mass spectrometry. Anal Sci 24:345–353

    Article  CAS  PubMed  Google Scholar 

  38. Yokoyama TD, Suzuki T, Kon Y, Hirata T (2011) Determinations of REE abundance and U-Pb age of zircons using multispot laser ablation-ICP-mass spectrometry. Anal Chem 83:8892–8899

    Article  CAS  PubMed  Google Scholar 

  39. Kuhn HR, Günther D (2006) A quantification strategy in laser ablation ICP-MS based on the transported aerosol particle volume determined by optical particle size measurement. J Anal At Spectrom 21:1209–1213

    Article  CAS  Google Scholar 

  40. Huang HK, Wu SC (1976) The evaluation of mass densities of the human body in vivo from CT scans. Comput Biol Med 6:337–343

    Article  CAS  PubMed  Google Scholar 

  41. Trundnowski RJ, Rico RC (1974) Specific gravity of blood and plasma at 4 and 37 °C. Clin Chem 20:615–616

    Google Scholar 

  42. Bryan AK, Hechet VC, Shen W, Payer K, Grover WH, Manalis SR (2014) Measuring single cell mass, volume, and density with dual suspended microchannel resonator. Lab Chip 14:569–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Seyer WF, Patterson RF, Keays JL (1944) The density and transition points of the n-paraffin hydrocarbons. J Am Chem Soc 66:179–182

    Article  CAS  Google Scholar 

  44. Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM610 and NIST SRM612 glass reference materials. Geostand Newslett 21:115–144

    Article  CAS  Google Scholar 

  45. Tunheng A, Hirata T (2004) Development of signal smoothing device for precise elemental analysis using laser ablation-ICP-mass spectrometry. J Anal At Spectrom 19:932–934

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to express my gratitude to Mr. M. Tanaka, Mr. Y. Higashi, Mr. H. Obayashi (Kyoto Univ., Japan), and Dr. T. Shimamura (Kitasato Univ., Japan) for providing valuable suggestions and scientific insights concerning the biological activities of trace metals. This work was partly supported by a Grant-in-Aid for Scientific Research A26247094 for TH and C24590760 for AT from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takafumi Hirata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Makino, Y. et al. (2017). Quantitative Elemental Bioimaging Protocol Using Femtosecond-Laser Ablation-ICP-Mass Spectrometry Coupled with Glass Standard Reference Material. In: Ogra, Y., Hirata, T. (eds) Metallomics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56463-8_4

Download citation

Publish with us

Policies and ethics